Skip to main content
Log in

Electrochemical study on corrosion process characteristics of the high-strength low-alloy steels in NaHSO3 solution

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical methods were used to study the characteristics of corrosion process for the high-strength low-alloy steel and carbon steel used as a huge oil storage tank in NaHSO3 solution. The polarization curve results show that both steel samples take place in active solution, and the high-strength low-alloy (HSLA) steel has higher i corr value than carbon steel, which is due to the small grain size that provides high density of active sites for preferential attack. The electrochemical impedance spectroscopy (EIS) results make known that the corrosion process presents two stages. In the first 136 h, one-time constant in EIS diagrams can be shown. Both steels have similar corrosion resistance due to the combination effects of the grain size and microstructure. After 240 h of immersion, a complete passive film forms on the specimen surface, and two-time constants can be shown in EIS diagram. The HSLA steel exhibited improved corrosion resistance when compared with the carbon steel, which is due to the effect of the shape Fe3C in microstructure and the deposition of FeSO4 on the electrode surface. The scanning electrode microscopy analyses show that both steels take place in homogenous corrosion, and the carbon steel shows higher surface roughness and many Fe3C residues. XRD results show that both steels have similar phase constitutes of corrosion products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li DG, Feng YR, Bai ZM et al (2007) Electrochim Acta 52:7877. doi:10.1016/j.electacta.2007.06.059

    Article  CAS  Google Scholar 

  2. Choi YS, Shim JJ, Kim JG (2004) Mater Sci Eng A 385:148

    Google Scholar 

  3. Choi YS, Kim JG (2000) Corrosion 56:1202

    CAS  Google Scholar 

  4. Alves VA, Bret CMA (2002) Electrochim Acta 47:2081. doi:10.1016/S0013-4686(02) 00077-4

    Article  CAS  Google Scholar 

  5. Yang Q, Luo JL (2000) Electrochim Acta 45:3927. doi:10.1016/S0013-4686(00) 00492-8

    Article  CAS  Google Scholar 

  6. Martini EMA, Muller IL (2000) Corros Sci 42:443. doi:10.1016/S0010-938X(99) 00064-5

    Article  CAS  Google Scholar 

  7. Davies DH, Burstein GT (1980) Corrosion 36:416

    CAS  Google Scholar 

  8. Chinese Railway Standard Testing method for corrosivity of industrial gas, TBT2375, 1994, pp 1–6.

  9. Meng GZ, Li Y, Wang FH (2006) Electrochim Acta 51:4277. doi:10.1016/j.electacta.2005.12.015

    Article  CAS  Google Scholar 

  10. Christiansen KA, Hoeg H, Michelsen K et al (1961) Acta Chem Scand 15:300. doi:10.3891/acta.chem.scand.15-0300

    Article  CAS  Google Scholar 

  11. Bockris JOM, Drazic D, Despic R (1961) Electrochim Acta 4:325. doi:10.1016/0013-4686(61) 80026-1

    Article  CAS  Google Scholar 

  12. Albarran JL, Martinez L, Lopez HF (1999) Corros Sci 41:1049. doi:10.1016/S0010-938X(98) 00139-5

    Google Scholar 

  13. Wallinder D, Pan J, Lergraf C et al (1999) Corros Sci 41:275. doi:10.1016/S0010-938X(98) 00122-X

    Article  CAS  Google Scholar 

  14. Dugstad A, Hemmer H, Seiersten M (2000) Proceeding of NACA Corrosion NACE 2000, Orlando, p 30

  15. Tan YJ, Bailey S, Kinsella B (1996) Corros Sci 38:1545. doi:10.1016/0010-938X(96) 00047-9

    Article  CAS  Google Scholar 

  16. Cao CN, Zhang JQ (2002) An introduction to electrochemical impedance spectroscopy. Science, Beijing, China

    Google Scholar 

  17. Wallinder D, Pan J, Lergraf C (1999) Corros Sci 41:275. doi:10.1016/S0010-938X(98) 00122-X

    Article  CAS  Google Scholar 

  18. Macák J, Sajdl P, Kučera P (2006) Electrochim Acta 51:3573. doi:10.1016/j.electacta.2005.10.013

    Article  CAS  Google Scholar 

  19. Zhang CL, Cai DY, Liao B (2004) Mater Lett 58:1524. doi:10.1016/j.matlet.2003.10.018

    Article  CAS  Google Scholar 

  20. Vera R, Rosales BM, Tapia C (2003) Corros Sci 45:321. doi:10.1016/S0010-938X(02) 00071-9

    Article  Google Scholar 

  21. Li DY (2006) Mater Rec Soc Symp Proc 887:227

    CAS  Google Scholar 

  22. Li W, Li DY (2005) Appl Surf Sci 240:388. doi:10.1016/j.apsusc.2004.07.017

    Article  CAS  Google Scholar 

  23. Mora-Mendoza JL, Turgoose S (2002) Corros Sci 44:1223. doi:10.1016/S0010-938X(01) 00141-X

    Article  CAS  Google Scholar 

  24. Malik H (1995) Corrosion 51:321

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Zhang, Y., Zhang, H. et al. Electrochemical study on corrosion process characteristics of the high-strength low-alloy steels in NaHSO3 solution. J Solid State Electrochem 13, 1645–1652 (2009). https://doi.org/10.1007/s10008-009-0810-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0810-9

Keywords

Navigation