Skip to main content
Log in

Surface chemistry and electronics of semiconductor–nanosystem junctions I: metal-nanoemitter-based solar cells

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Photoelectrochemically prepared nanotopographies on semiconductors are used for realization of nanoemitter solar devices that are active in the photovoltaic and the photoelectrocatalytic mode. The development of solar devices by a nonlinear electrochemical process and combined chemical/electrochemical metal deposition is described. Based on this low-temperature scalable approach, first efficiencies of 7.3% in the photovoltaic mode are reported for the photoelectrochemical solar cell n-Si/SiO2/Pt/I3 –I. With p-Si/Pt nanocomposite structures, light-induced H2 evolution is achieved. The surface chemistry and morphology is analyzed by photoelectron spectroscopy (PES), Fourier transform infrared spectroscopy, and high-resolution scanning electron microscopy. The operational principle of Pt-based nanoemitter solar devices that use silicon single crystal absorbers is analyzed by Mott–Schottky plots, chronoamperometric profiles, and PES. Related to simultaneous oxide formation during Pt deposition, evidence for the formation of a metal–oxide–semiconductor junction is obtained that explains the observed electronic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Sze SM (1980) Semiconductor devices. Wiley, New York

    Google Scholar 

  2. Turing AM (1952) Philos Trans R Soc Lond Ser B 237:37

    Article  Google Scholar 

  3. Kinoshita S, Yoshioka S, Kawagoe KK (2002) Proc R Soc London, Ser B 269:1417 doi:10.1098/rspb.2002.2019

    Article  Google Scholar 

  4. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  5. de Tacconi MR, Chenthamarakshan CR, Yogeeswaran G, Watcharenwong A, de Zoysa S, Basit NA et al (2006) J Phys Chem B 110:25347 doi:10.1021/jp064527v

    Article  Google Scholar 

  6. Lijima S (1991) Nature 354:56 doi:10.1038/354056a0

    Article  Google Scholar 

  7. Adachi E (2000) Langmuir 16:6460 doi:10.1021/la000244x

    Article  CAS  Google Scholar 

  8. Wehrspohn RB, Schilling J (2001) MRS Bull 26:623

    CAS  Google Scholar 

  9. Li Y, Zheng M, Ma L, Shen W (2006) Nanotechnology 17:5101 doi:10.1088/0957-4484/17/20/010

    Article  CAS  Google Scholar 

  10. Teo SHG, Liu AQ, Singh J, Yu J, Sun HQ, Singh N (2006) Int J Nanosci 5:383 doi:10.1142/S0219581X06004516

    Article  CAS  Google Scholar 

  11. Cabrini S, Barsotti RJ, Carpentiero A, Businaro L, Zaccaria RP, Stellacci F et al (2005) J Vac Sci Technol B 25:2806 doi:10.1116/1.2062647

    Article  Google Scholar 

  12. Bundgaard E, Krebs FC (2007) Sol Energy Mater Sol Cells 91:1019 doi:10.1016/j.solmat.2007.01.013

    Article  CAS  Google Scholar 

  13. Su M, Fu L, Wu NQ, Aslam M, Dravid VP (2004) Appl Phys Lett 84:828 doi:10.1063/1.1645323

    Article  CAS  Google Scholar 

  14. Rauscher S (2004) PhD thesis, Brandenburgisch-Technische Universität Cottbus, Germany

  15. Lewerenz HJ, Aggour M, Murrell C, Kanis M, Jungblut H, Jakubowicz J et al (2003) J Electrochem Soc 150:E185 doi:10.1149/1.1542900

    Article  CAS  Google Scholar 

  16. Parkhutik V (2000) J Porous Mater 7:363 doi:10.1023/A:1009643206266

    Article  CAS  Google Scholar 

  17. Canham LT (1995) Adv Mater 7:1033 doi:10.1002/adma.19950071215

    Article  CAS  Google Scholar 

  18. Lewerenz HJ, Jakubowicz J, Jungblut H (2004) Electrochem Commun 6:460

    Google Scholar 

  19. Skorupska K, Jakubowicz J, Jungblut H, Lewerenz HJ (2004) Superlattices Microstruct 36:211 doi:10.1016/j.spmi.2004.08.018

    Article  CAS  Google Scholar 

  20. Skorupska K, Lublow M, Kanis M, Jungblut H, Lewerenz HJ (2005) Appl Phys Lett 87:262101 doi:10.1063/1.2150267

    Article  Google Scholar 

  21. Skorupska K, Lublow M, Kanis M, Jungblut H, Lewerenz HJ (2005) Electrochem Commun 7:1077 doi:10.1016/j.elecom.2005.07.012

    Article  CAS  Google Scholar 

  22. Lewerenz HJ, Jungblut H, Rauscher S (2000) Electrochim Acta 45:4615 doi:10.1016/S0013-4686(00)00613-7

    Article  CAS  Google Scholar 

  23. Jungblut H, Lewerenz HJ (2000) Appl Surf Sci 168:194 doi:10.1016/S0169-4332(00)00589-4

    Article  CAS  Google Scholar 

  24. Grüning U, Lehmann V, Engelhardt C (1995) Appl Phys Lett 66:3254 doi:10.1063/1.113395

    Article  Google Scholar 

  25. Grzanna J, Lewerenz HJ, Jungblut H (2000) J Electroanal Chem 486:181 486:190

    Article  CAS  Google Scholar 

  26. Lewerenz HJ, Aggour M (1993) J Electroanal Chem 351:159 doi:10.1016/0022-0728(93)80231-6

    Article  CAS  Google Scholar 

  27. Lewerenz HJ, Schlichthörl G (1992) J Electroanal Chem 327:85 doi:10.1016/0022-0728(92)80138-T

    Article  CAS  Google Scholar 

  28. Grzanna J, Jungblut H, Lewerenz HJ (2005) AIP Conf Proc 780:635 doi:10.1063/1.2036832

    Article  CAS  Google Scholar 

  29. Skorupska K, Sadewasser S, Streicher F, Lewerenz HJ (2008) (in press)

  30. Skorupska K, Lublow M, Stempel T, Kanis M, Pettenkofer C, Lewerenz HJ (2008) (in press)

  31. Rappich J, Lewerenz HJ (1996) Thin Solid Films 276:25 doi:10.1016/0040-6090(95)08041-4

    Article  CAS  Google Scholar 

  32. Aggour M, Giersig M, Lewerenz HJ (1995) J Electroanal Chem 383:67 doi:10.1016/0022-0728(94)03723-G

    Article  Google Scholar 

  33. Sinton RA, Swanson RM (1987) IEEE Trans Electron Dev 34:2116 doi:10.1109/T-ED.1987.23205

    Article  Google Scholar 

  34. Lewerenz HJ (1997) J Phys Chem B 101:2421 doi:10.1021/jp962694x

    Article  CAS  Google Scholar 

  35. Markov AA (1971) Extension of the limit theorems of probability theory to a sum of variables connected in a chain (reprinted in Appendix B of: R. Howard: Dynamic probabilistic systems, vol 1: Markov chains). Wiley, New York

    Google Scholar 

  36. Hong C, Akinwande AI (2005) Electrochem Solid-State Lett 8:F13 doi:10.1149/1.1887190

    Article  CAS  Google Scholar 

  37. Lublow M, Lewerenz HJ (2007) Electrochem Solid-State Lett 10:C51 doi:10.1149/1.2742503

    Article  CAS  Google Scholar 

  38. Grzanna J, Jungblut H, Lewerenz HJ (2007) Phys Status Solidi A 204:1245

    Google Scholar 

  39. Carstensen J, Prange R, Popkirov GS, Föll H (1998) Appl Phys A 67:459 doi:10.1007/s003390050804

    Article  CAS  Google Scholar 

  40. Tersoff J (1984) Phys Rev Lett 52:465 doi:10.1103/PhysRevLett.52.465

    Article  CAS  Google Scholar 

  41. Yae S, Kitagaki M, Hagihara T, Miyoshi Y, Matsuda H, Parkinson BA et al (2001) Electrochim Acta 47:345 doi:10.1016/S0013-4686(01)00582-5

    Article  CAS  Google Scholar 

  42. Myland JC, Oldham KB (2004) Electrochem Commun 6:344 doi:10.1016/j.elecom.2004.01.013

    Article  CAS  Google Scholar 

  43. Kelly JJ, Vanmaekelbergh D (1998) Chapter 2 in: semiconductor micromachining vol. 1. In: Campbell SA, Lewerenz HJ (eds) Fundamental electrochemistry and physics. Wiley, Chichester

    Google Scholar 

  44. van de Ven J, Kelly JJ (2001) J Electrochem Soc 148:G10 doi:10.1149/1.1344556

    Article  Google Scholar 

  45. Muñoz AG, Lewerenz HJ (2008) J Electrochem Soc 155:C527 doi:10.1149/1.2929834

    Article  Google Scholar 

  46. Heller A, Vadimsky RG (1981) Phys Rev Lett 46:1153 doi:10.1103/PhysRevLett.46.1153

    Article  CAS  Google Scholar 

  47. Lewerenz HJ, Schulte K (2002) Electrochim Acta 47:2633 doi:10.1016/S0013-4686(02)00125-1

    Article  Google Scholar 

  48. Schulte K, Lewerenz HJ (2002) Electrochim Acta 47:2639 doi:10.1016/S0013-4686(02)00124-X

    Article  Google Scholar 

  49. Lewerenz HJ (2008) Hothersall memorial award lecture. Trans Inst Metab Finish 86:19 doi:10.1179/174591908X264400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Lewerenz.

Additional information

Contribution to the Fall Meeting of the European Materials Research Society, Symposium D: 9th International Symposium on Electrochemical/Chemical Reactivity of Metastable Materials, Warsaw, 17th–21st September 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewerenz, H.J., Skorupska, K., Aggour, M. et al. Surface chemistry and electronics of semiconductor–nanosystem junctions I: metal-nanoemitter-based solar cells. J Solid State Electrochem 13, 185–194 (2009). https://doi.org/10.1007/s10008-008-0640-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0640-1

Keywords

Navigation