Skip to main content

Advertisement

Log in

Characterization and electrochemical applications of a carbon with high density of surface functional groups produced from beer yeast

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Carbon materials enriched with nitrogen and oxygen surface functional groups were obtained by pyrolyzing strained beer yeast at 750 °C under an inert atmosphere. Physical and surface properties of the carbon obtained were characterized by X-ray powder diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectrometry, and X-ray photoelectron spectroscopy. Results show that the carbon possesses an amorphous structure, a spherical morphology, and a high density of surface functional groups. Electrochemical properties were evaluated by cyclic voltammetry, a galvanostatic charge–discharge technique, and electrochemical impedance spectroscopy. The carbon has 989.65 mAh·g−1 of initial discharge capacity and a stable cycle performance for a Li–C cell. A specific capacitance of 120 F·g−1 was obtained for a single carbon electrode and good cycle performance was achieved for a symmetrical supercapacitor fabricated using this carbon. These carbons derived from strained beer yeast have promising applications in energy storage and conversion systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Szymański GS, Zbigniew K, Biniak S, Świątkowski A (2002) Carbon 40:2627 doi:10.1016/S0008-6223(02)00188-4

    Article  Google Scholar 

  2. Kim YJ, Lee HJ, Lee SW, Cho BW, Park CR (2005) Carbon 43:163 doi:10.1016/j.carbon.2004.09.001

    Article  CAS  Google Scholar 

  3. Pittman CU Jr, He GR, Wu B, Gardner SD (1998) Carbon 36:25 doi:10.1016/S0008-6223(97)00147-4

    Article  CAS  Google Scholar 

  4. Xie F, Phillips J, Silva IF, Palma MC, Menéndez JA (2000) Carbon 38:691 doi:10.1016/S0008-6223(99)00156-6

    Article  CAS  Google Scholar 

  5. Hu CC, Wang CC (2004) J Power Sources 125:299 doi:10.1016/j.jpowsour.2003.08.002

    Article  CAS  Google Scholar 

  6. Bagreev A, Angel Menendez J, Duhkno I, Tarasenko Y, Bandosz TJ (2004) Carbon 42:469 doi:10.1016/j.carbon.2003.10.042

    Article  CAS  Google Scholar 

  7. Bonino F, Brutti S, Reale P, Scrosati B, Gherghel L, Wu J et al (2005) Adv Mater 17:743 doi:10.1002/adma.200401006

    Article  CAS  Google Scholar 

  8. Inagaki M (2000) New carbons. Elsevier Science, Oxford

    Google Scholar 

  9. Su FB, Zhao XS, Wang Y, Zeng JH, Zhou ZC, Jim YL (2005) J Phys Chem B 109:20200 doi:10.1021/jp0541967

    Article  CAS  Google Scholar 

  10. Wu YP, Fang SB, Jiang YY (1999) Solid State Ionics 120:117 doi:10.1016/S0167-2738(98)00158-1

    Article  CAS  Google Scholar 

  11. Nakamura K, Fujitsuka M, Kitajima M (1990) Phys Rev B 41:12260 doi:10.1103/PhysRevB.41.12260

    Article  CAS  Google Scholar 

  12. Deon H, Andrey B, Bandosz TJ (2004) Langmuir 20:3388 doi:10.1021/la0360613

    Article  Google Scholar 

  13. Liu JW, Shao MW, Tang Q, Zhang SY, Qian YT (2003) J Phys Chem B 107:6329 doi:10.1021/jp034881i

    Article  CAS  Google Scholar 

  14. Yang Q, Xu W, Tomita A, Kyotani T (2005) Chem Mater 17:2940 doi:10.1021/cm047830m

    Article  CAS  Google Scholar 

  15. Lespade P, Al-jishi R, Dresselhaus MS (1982) Carbon 20:427 doi:10.1016/0008-6223(82)90043-4

    Article  CAS  Google Scholar 

  16. Biniak S, Szymański G, Siedlewski J, Swiatkowski A (1997) Carbon 35:1799

    Article  CAS  Google Scholar 

  17. Stańczyk K, Dziembaj R, Piwowarska Z, Witkowski S (1995) Carbon 33:1383 doi:10.1016/0008-6223(95)00084-Q

    Article  Google Scholar 

  18. Darmstadt H, Roy C, Kaliaguine S (1994) Carbon 32:1399 doi:10.1016/0008-6223(94)90132-5

    Article  CAS  Google Scholar 

  19. Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Carbon 37:1379 doi:10.1016/S0008-6223(98)00333-9

    Article  CAS  Google Scholar 

  20. Flandrois S, Simon B (1999) Carbon 37:165 doi:10.1016/S0008-6223(98)00290-5

    Article  CAS  Google Scholar 

  21. Frackowiak E, Gautier S, Gaucher H, Bonnamy S, Beguin F (1999) Carbon 37:61 doi:10.1016/S0008-6223(98)00187-0

    Article  CAS  Google Scholar 

  22. Rahner D, Machill S, Schlorb H, Siury K, Kloss M, Plieth W (1998) J Solid State Electrochem 2:78 doi:10.1007/s100080050068

    Article  CAS  Google Scholar 

  23. Lery S, Blanchard F, Dedryvere R, Martinez H, Carre B, Lemordant D et al (2005) Surf Interface Anal 37(10):773 doi:10.1002/sia.2072

    Article  Google Scholar 

  24. Liu HT, He P, Li ZY, Liu Y, Li JH (2005) Electrochim Acta 51(10):1925 doi:10.1016/j.electacta.2005.06.034

    Article  Google Scholar 

  25. Koh M, Nakajima T (2000) Carbon 38(14):1947 doi:10.1016/S0008-6223(00)00040-3

    Article  CAS  Google Scholar 

  26. Conway BE (1999) Electrochemical supercapacitor: scientific fundamentals and technological applications. Kluwer-Plenum, New York

    Google Scholar 

  27. Qu DY (2002) J Power Sources 109(2):403 doi:10.1016/S0378-7753(02)00108-8

    Article  CAS  Google Scholar 

  28. Lufrano F, Staiti P, Minutoli M (2004) J Electrochem Soc 151(1):64 doi:10.1149/1.1626670

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Yangtze Normal University Research Start-up Foundation and Science and Technology Research Project of Chongqing Education Board (KJ081304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Tao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, GQ., Zhang, ST. Characterization and electrochemical applications of a carbon with high density of surface functional groups produced from beer yeast. J Solid State Electrochem 13, 887–893 (2009). https://doi.org/10.1007/s10008-008-0623-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0623-2

Keywords

Navigation