Skip to main content
Log in

FAD-modified SiO2/ZrO2/C ceramic electrode for electrocatalytic reduction of bromate and iodate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

SiO2/ZrO2/C carbon ceramic material with composition (in wt%) SiO2 = 50, ZrO2 = 20, and C = 30 was prepared by the sol–gel-processing method. A high-resolution transmission electron microscopy image showed that ZrO2 and the graphite particles are well dispersed inside the matrix. The electrical conductivity obtained for the pressed disks of the material was 18 S cm−1, indicating that C particles are also well interconnected inside the solid. An electrode modified with flavin adenine dinucleotide (FAD) prepared by immersing the solid SiO2/ZrO2/C, molded as a pressed disk, inside a FAD solution (1.0 × 10−3 mol L−1) was used to investigate the electrocatalytic reduction of bromate and iodate. The reduction of both ions occurred at a peak potential of −0.41 V vs. the saturated calomel reference electrode. The linear response range (lrr) and detection limit (dl) were: BrO3 , lrr = 4.98 × 10−5–1.23 × 10−3 mol L−1 and dl = 2.33 μmol L−1; IO3 , lrr = 4.98 × 10−5 up to 2.42 × 10−3 and dl = 1.46 μmol L−1 for iodate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang B, Li B, Wang Z, Xu G, Wang Q, Dong S (1999) Anal Chem 7:1935

    Article  Google Scholar 

  2. Salimi A, Pourbeyram S (2003) Talanta 60:205

    Article  CAS  Google Scholar 

  3. Walcarius A (2001) Electroanalysis 13:701

    Article  CAS  Google Scholar 

  4. Wang J (1999) Anal Chim Acta 399:21

    Article  CAS  Google Scholar 

  5. Tsionsky M, Gun J, Glezer V, Lev O (1994) Anal Chem 66:1747

    Article  CAS  Google Scholar 

  6. Rabinovich L, Lev O (2001) Electroanalysis 13:265

    Article  CAS  Google Scholar 

  7. Wang P, Wang X, Zhu G (2000) Eletrochim Acta 46:637

    Article  CAS  Google Scholar 

  8. Wang P, Wang X, Zhu G (2000) Electroanalysis 12:1493

    Article  CAS  Google Scholar 

  9. Shankaran DR, Uehera N, Kato T (2002) Sens Actuators B Chem 87:442

    Article  Google Scholar 

  10. Shankaran DR, Uehara N, Kato T (2003) Biosens Bioelectron 18:721

    Article  Google Scholar 

  11. Salimi A, Pourbeyram S, Haddadzadeh H (2003) J Electroanal Chem 542:39

    Article  CAS  Google Scholar 

  12. Salimi A, Abdi K, Khayatiyan G (2004) Electrochim Acta 49:413

    Article  CAS  Google Scholar 

  13. Niedziolka J, Opallo M (2003) Electrochem Commun 5:924

    Article  CAS  Google Scholar 

  14. Opallo M, Saczek-Maj M, Shul G, Hayman CM, Page PCB, Marken F (2005) Electrochim Acta 50:1711

    Article  CAS  Google Scholar 

  15. Akimoto M, Sato Y, Okubo T, Todo H, Hasegawa T, Sugibayashi K (2006) Biol Pharm Bull 29:1779

    Article  CAS  Google Scholar 

  16. Massey V (2000) Biochem Soc Trans 28:283

    Article  CAS  Google Scholar 

  17. Ksenzhek SO, Petrova SA (1983) J Electroanal Chem 11:105

    Article  CAS  Google Scholar 

  18. Noll G, Kozma E, Grandori R, Carey J, Schodl T, Hauska G, Daub J (2006) Langmuir 22:2378

    Article  Google Scholar 

  19. Wang Y, Zhu G, Wang E (1997) Anal Chim Acta 338:97

    Article  CAS  Google Scholar 

  20. Gorton L, Johansson G (1980) J Electroanal Chem 113:151

    Article  CAS  Google Scholar 

  21. Verhagen MFJM, Hagen WR (1992) J Electroanal Chem 334:339

    Article  CAS  Google Scholar 

  22. Ivnova YN, Karyakin AA (2004) Electrochem Commun 6:120

    Article  Google Scholar 

  23. Karyakin AA, Ivanova YN, Revunova KV, Karyakina EE (2004) Anal Chem 76:2004

    Article  CAS  Google Scholar 

  24. Kubota LT, Gorton L, Roddick-Lanzilotta A, McQuillan AJ (1998) Bioelectrochem Bioenerg 47:39

    Article  CAS  Google Scholar 

  25. Milsom EV, Perrott HR, Peter LM, Marken F (2005) Langmuir 21:9482

    Article  CAS  Google Scholar 

  26. Takayanagi T, Makamoto I, Mbuna J, Driouich R, Motomizu S (2006) J Chromatogr A 1128:298

    Article  CAS  Google Scholar 

  27. Kruithof JC, Meijers RT (1995) Water Suppl 117:13

    Google Scholar 

  28. Xie L, Shang C (2007) Chemosphere 66:1652

    Article  CAS  Google Scholar 

  29. Kurokawa Y, Maekawa A, Takahashi M, Hayashi Y (1990) Environ Health Perspect 87:309

    Article  CAS  Google Scholar 

  30. Kurata Y, Diwan BA, Ward JM (1992) Food Chem Toxicol 30:965

    Google Scholar 

  31. Jakmunee J, Grudpan K (2001) Anal Chim Acta 428:299

    Article  Google Scholar 

  32. Salimi A, Noorbakhsh A, Ghadermarzi M (2007) Sens Actuators B 123:530

    Article  Google Scholar 

  33. Marafon E, Francisco MSP, Lucho AMS, Landers R, Gushikem Y (2005) Brazilian Patent Br PI 0506395-7

  34. Marafon E, Lucho AMS, Francisco MSP, Landers R, Gushikem Y (2006) J Braz Chem Soc 17:1605

    Article  CAS  Google Scholar 

  35. Alfaya AAS, Gushikem Y, de Castro SC (2000) Microp Mesopor Mater 39:57

    Article  CAS  Google Scholar 

  36. Yamashita M, Rosatto SS, Kubota LT (2002) J Braz Chem Soc 13:635

    Article  CAS  Google Scholar 

  37. Wang J (1994) Analytical electrochemistry. VCH, New York, p 170

    Google Scholar 

  38. Gorton L, Johansson G (1980) Electroanal Chem 113:151

    Article  CAS  Google Scholar 

  39. Bergel A, Comtat M (1991) J Electroanal Chem 302:219

    Article  CAS  Google Scholar 

  40. Honeychurch MJ, Ridd MJ (1996) Electroanalysis 8:362

    Article  CAS  Google Scholar 

  41. Ksenzhek OS, Petrova SA (1983) Bioelectrochem Bioenerg 11:105

    Article  CAS  Google Scholar 

  42. Andrieux CP, Savéant JM (1978) J Electroanal Chem 93:163

    Article  CAS  Google Scholar 

  43. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

EM is indebted to FAPESP for fellowship (grant 04/00919-5) and YG and LTK for financial support (grant 00/11103-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Gushikem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marafon, E., Kubota, L.T. & Gushikem, Y. FAD-modified SiO2/ZrO2/C ceramic electrode for electrocatalytic reduction of bromate and iodate. J Solid State Electrochem 13, 377–383 (2009). https://doi.org/10.1007/s10008-008-0564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0564-9

Keywords

Navigation