Skip to main content
Log in

Pseudocapacitive behaviors of nanostructured manganese dioxide/carbon nanotubes composite electrodes in mild aqueous electrolytes: effects of electrolytes and current collectors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured MnO2/carbon nanotubes composite electrode material was prepared using the liquid-phase deposition reaction starting with potassium permanganate (KMnO4) and manganese acetate (Mn(Ac)2·4H2O) as the reactants and carbon nanotubes (CNTs) as the substrates. The structure and morphology of the material was characterized by X-ray diffraction, infrared spectroscopy, and transmission electron microscope techniques. The electrochemical properties of the nano-MnO2/CNTs composite electrode in 1 M LiAc and 1 M MgSO4 solutions and in 1 M RAc (R = Li, Na, and K)–1 M MgSO4 mixed solutions, respectively, were studied. Experimental results demonstrated that the specific capacitance and rate discharge ability of the nano-MnO2/CNTs composite electrode in 1 M LiAc–1 M MgSO4 mixed solution is superior to that in 1 M LiAc or 1 M MgSO4 solution. For the 1 M RAc (R = Li, Na, and K)–1 M MgSO4 mixed electrolytes, the specific capacitance of the composite electrode was found to be in the following order: LiAc > NaAc > KAc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Conway BE (1991) J Electrochem Soc 138:1539

    Article  CAS  Google Scholar 

  2. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699

    Article  CAS  Google Scholar 

  3. Nam KW, Yoon WS, Kim KB (2002) Electrochim Acta 47:3201

    Article  CAS  Google Scholar 

  4. Srinivasan V, Weidner JW (2002) J Power Sources 108:15

    Article  CAS  Google Scholar 

  5. Lee HY, Goodenough JB (1999) J Solid State Chem 144:220

    Article  CAS  Google Scholar 

  6. Pang SC, Anderson MA, Chapman TW (2000) J Electrochem Soc 147:444

    Article  CAS  Google Scholar 

  7. Toupin M, Brousse T, Bélanger D (2002) Chem Mater 14:3946

    Article  CAS  Google Scholar 

  8. Reddy RN, Reddy RG (2003) J Power Sources 124:330

    Article  CAS  Google Scholar 

  9. Prasad KR, Miura N (2004) J Power Sources 135:354

    Article  CAS  Google Scholar 

  10. Chen YS, Hu CC, Wu YT (2004) J Solid State Electrochem 8:467

    Article  CAS  Google Scholar 

  11. Subramanian V, Zhu HW, Vajtai R, Ajayan PM, Wei BQ (2005) J Phys Chem B 109:20207

    Article  CAS  Google Scholar 

  12. Broughton JN, Brett MJ (2005) Electrochim Acta 50:4814

    Article  CAS  Google Scholar 

  13. Nam KW, Kim KB (2006) J Electrochem Soc 153:A81

    Article  CAS  Google Scholar 

  14. Kuo SL, Wu NL (2006) J Electrochem Soc 153:A1317

    Article  CAS  Google Scholar 

  15. Brousse T, Toupin M, Dugas R, Athouël L, Crosnier O, Bélanger D (2006) J Electrochem Soc 153:A2171

    Article  CAS  Google Scholar 

  16. Chun SE, Pyun SI, Lee GJ (2006) Electrochim Acta 51:6479

    Article  CAS  Google Scholar 

  17. Hong MS, Lee SH, Kim SW (2002) Electrochem Solid-State Lett 5:A227

    Article  CAS  Google Scholar 

  18. Brousse T, Toupin M, Bélanger D (2004) J Electrochem Soc 151:A614

    Article  CAS  Google Scholar 

  19. Khomenko V, Raymundo-Piñero E, Béguin F (2006) J Power Sources 153:183

    Article  CAS  Google Scholar 

  20. Wu YT, Hu CC (2004) J Electrochem Soc 151:A2060

    Article  CAS  Google Scholar 

  21. Zhou YK, He BL, Zhang FB, Li HL (2004) J Solid State Electrochem 8:482

    Article  CAS  Google Scholar 

  22. Raymundo-Piñero E, Khomenko V, Frackowiak E, Béguin F (2005) J Electrochem Soc 152:A229

    Article  Google Scholar 

  23. Lee CY, Tsai HM, Chuang HJ, Li SY, Lin P, Tseng TY (2005) J Electrochem Soc 152:A716

    Article  CAS  Google Scholar 

  24. Wang GX, Zhang BL, Yu ZL, Qu MZ (2005) Solid State Ionics 176:1169

    Article  CAS  Google Scholar 

  25. Subramanian V, Zhu HW, Wei BQ (2006) Electrochem Commun 8:827

    Article  CAS  Google Scholar 

  26. Fan Z, Chen JH, Wang MY, Cui KZ, Zhou HH, Kuang YF (2006) Diam Relat Mater 15:1478

    Article  CAS  Google Scholar 

  27. Ma SB, Ahn KY, Lee ES, Oh KH, Kim KB (2007) Carbon 45:375

    Article  CAS  Google Scholar 

  28. Zhang ML, Yang C, Chen Y, Xue Y (2004) Chin J Power Sources 28:626

    CAS  Google Scholar 

  29. Ananth M V, Pethkar S, Dakshinamurthi K (1998) J Power Sources 75:278

    Article  CAS  Google Scholar 

  30. Toupin M, Brousse T, Bélanger D (2004) Chem Mater 16:3184

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anbao Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Yuan, A. & Wang, X. Pseudocapacitive behaviors of nanostructured manganese dioxide/carbon nanotubes composite electrodes in mild aqueous electrolytes: effects of electrolytes and current collectors. J Solid State Electrochem 12, 1101–1107 (2008). https://doi.org/10.1007/s10008-007-0445-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0445-7

Keywords

Navigation