Skip to main content
Log in

The electrochemical properties of a platinum electrode in functionalized room temperature imidazolium ionic liquids

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical behavior of a platinum electrode in a set of 1-alkyl ether (and 1-alkyl)-3-methylimidazolium room-temperature ionic liquids (RTILs) 1–3 ([CxOyMim]+[Anion] or [CxMim]+[Anion], where Mim = 3-methylimidazolium; CxOy = 1-alkyl ether; C7O3 = -(CH2)2O(CH2)2O(CH2)2OCH3; C3O1 = -(CH2)2OCH3; Cx = 1-alkyl; C10 = C10H21; C4 = C4H9; and \( {\left[ {{\text{Anion}}} \right]}^{ - } = {\text{H}}_{3} {\text{CSO}}^{ - }_{3} ,{\text{ BF}}^{ - }_{4} {\text{, or PF}}^{ - }_{6} \)) was studied by cyclic voltammetry and electrical conductivity. This complementary set of imidazolium RTILs allowed us to explore the effect of the imidazolium cation and the counter-ion, both of which affected the electrochemical window of these RTILs. Various electrochemical events with low current values were observed, which diminished the electrochemical windows. Interestingly, RTILs 2b [1-(2-methoxyethyl)-3-methylimidazolium tetrafluoroborate] and 2d [1-butyl-3-methylimidazolium tetrafluoroborate] showed quasireversible charge transfer processes. The length of the functional group attached to the imidazolium cation was shown to be of great influence as larger electrochemical windows, as well as lower electrical conductivities, were obtained with the longer C7O3 and C10 functional groups. The largest electrochemical window of 2.0 V was achieved with RTIL 2c, 1-decyl-3-methylimidazolium tetrafluoroborate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dupont J, Consorti CS, Spencer J (2000) J Braz Chem Soc 11:337

    CAS  Google Scholar 

  2. Dupont J, Souza RF, Suarez PAZ (2002) Chem Rev 102:3667

    Article  CAS  Google Scholar 

  3. Welton T (1999) Chem Rev 99:2071

    Article  CAS  Google Scholar 

  4. Astruc D, Lu F, Aranzaes JR (2005) Angew Chem 117:8062

    Article  Google Scholar 

  5. Astruc D, Lu F, Aranzaes JR (2005) Angew Chem Int Ed Engl 44:7852

    Article  CAS  Google Scholar 

  6. Migowski P, Dupont J (2007) Chem Eur J 13:32

    Article  Google Scholar 

  7. Yang Z, Pan W (2005) Enzyme Microb Technol 37:19

    Article  CAS  Google Scholar 

  8. Souza RF, Padilha JC, Gonçalves RS, Dupont J (2003) Electrochem Commun 5:728

    Article  Google Scholar 

  9. Souza RF, Padilha JC, Gonçalves RS, Rault-Berthelot J (2006) Electrochem Commun 8:211

    Article  Google Scholar 

  10. Abedin SZE, Endres F (2006) ChemPhysChem 7:58

    Article  Google Scholar 

  11. Lee SG (2006) Chem Commun 10:1049

    Article  Google Scholar 

  12. Davis JH (2004) Chem Lett 33:1072

    Article  CAS  Google Scholar 

  13. Fei ZF, Geldbach TJ, Zhao DB, Dyson PJ (2006) Chem Eur J 12:2122

    Article  CAS  Google Scholar 

  14. Branco LC, Rosa JN, Ramos JJM, Afonso CAM (2002) Chem Eur J 8:3671

    Article  CAS  Google Scholar 

  15. Schrekker HS, Gelesky MA, Stracke MP, Silva DO, Schrekker CML, Dupont J (in preparation) J Braz Chem Soc

  16. Cassol CC, Ebeling G, Ferrera B, Dupont J (2006) Adv Synth Catal 348:243

    Article  CAS  Google Scholar 

  17. Xiao L, Johnson KE (2003) J Electrochem Soc 150:E307

    Article  CAS  Google Scholar 

  18. Santos VO, Alves MB, Carvalho MS, Suarez PAZ, Rubim JC (2006) J Phys Chem B 110:20379

    Article  CAS  Google Scholar 

  19. da Silveira Neto BA, Ebeling G, Gonçalves RS, Gozzo FC, Eberlin MN, Dupont J (2004) Synthesis 8:1155

    Google Scholar 

  20. Rivera-Rubero S, Baldelli S (2004) J Phys Chem B 108:15133

    Article  CAS  Google Scholar 

  21. Suarez PAZ, Selbach VM, Dullius JEL, Einloft S, Piatnicki CMS, Azambuja DS, Souza RF, Dupont J (1997) Electrochim Acta 42:2533

    Article  CAS  Google Scholar 

  22. Magnussen OM (2002) Chem Rev 102:679

    Article  CAS  Google Scholar 

  23. Suarez PAZ, Einloft S, Dullius JEL, Souza RF, Dupont J (1998) J Chim Phys 95:1626

    Article  CAS  Google Scholar 

  24. Dupont J, Suarez PAZ (2006) Phys Chem Chem Phys 8:2441

    Article  CAS  Google Scholar 

  25. Consorti CS, Suarez PAZ, de Souza RF, Burrow RA, Farrar DH, Lough AJ, Loh W, da Silva LHM, Dupont J (2005) J Phys Chem B 109:4341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the CNPq for financial support. H.S.S. thanks the CNPq for a visiting scientist fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri S. Schrekker.

Additional information

Dedicated to the memory of Prof. Francisco Nart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donato, R.K., Migliorini, M.V., Benvegnú, M.A. et al. The electrochemical properties of a platinum electrode in functionalized room temperature imidazolium ionic liquids. J Solid State Electrochem 11, 1481–1487 (2007). https://doi.org/10.1007/s10008-007-0304-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0304-6

Keywords

Navigation