Skip to main content
Log in

Electrochemical behavior of Pd–Rh alloys

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Pd–Rh alloys were prepared by electrochemical codeposition. Bulk compositions of the alloys were determined by the energy dispersive X-ray analysis method, while surface compositions were determined from the potential of the surface oxide reduction peak. Cyclic voltammograms, recorded in 0.5 M H2SO4 for Pd–Rh alloys of different bulk and surface compositions, are intermediate between curves characteristic of Pd and Rh. The influence of potential cycling on electrochemical properties and surface morphologies of the alloys was studied. Due to electrochemical dissolution of metals, both alloy surface and bulk become enriched with Pd. Carbon oxides were adsorbed at a constant potential from the range of hydrogen adsorption. The presence of adsorbed CO2 causes remarkable diminution of hydrogen adsorption but it does not significantly influence hydrogen insertion into the alloy bulk. On the other hand, in the presence of adsorbed CO, both hydrogen absorption and adsorption are strongly suppressed. Oxidative removal of the adsorbates results in a characteristic voltammetric peak, whose potential increases with the decrease in Rh surface content. Electron per site (eps) values calculated for the oxidation of the adsorbates change with alloy surface composition, more for CO2 than CO adsorption, indicating the variation of the structure and composition of CO2 and CO adsorption products. The course of the dependence of eps values on surface composition suggests that the products of CO2 and CO adsorption on Pd–Rh alloys are similar but not totally identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Woods R (1976) In: Bard AJ (ed) Electroanalytical chemistry, vol 9. Marcel Dekker, New York, p 2

    Google Scholar 

  2. Rand DAJ, Woods R (1972) J Electroanal Chem 36:57

    Article  CAS  Google Scholar 

  3. Rand DAJ, Woods R (1974) Surf Sci 41:611

    Article  Google Scholar 

  4. Mayell JS, Barber WA (1969) J Electrochem Soc 116:1333

    Article  CAS  Google Scholar 

  5. Czerwiński A, Sobkowski J (1984) Anal Lett 17:2175

    Google Scholar 

  6. Czerwiński A, Marassi R, Sobkowski J (1984) Ann Chim 74:681

    Google Scholar 

  7. Poirier JA, Stoner GE (1995) J Electrochem Soc 142:1127

    Article  CAS  Google Scholar 

  8. Baker BG, Rand DAJ, Woods R (1979) J Electroanal Chem 97:189

    Article  CAS  Google Scholar 

  9. Aston MK, Rand DAJ, Woods R (1984) J Electroanal Chem 163:199

    Article  CAS  Google Scholar 

  10. Siwek H, Łukaszewski M, Czerwiński A (2004) Pol J Chem 78:1121

    CAS  Google Scholar 

  11. Quiroz MA, Gonzalez I, Meas Y, Lamy-Pitara E, Barbier J (1987) Electrochim Acta 32:289

    Article  CAS  Google Scholar 

  12. Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger J-M, Lamy C (1998) J Electroanal Chem 444:41

    Article  CAS  Google Scholar 

  13. López de Mishima BA, Mishima HT, Castro G (1995) Electrochim Acta 40:2491

    Article  Google Scholar 

  14. Grdeń M, Paruszewska A, Czerwiński A (2001) J Electroanal Chem 502:91

    Article  Google Scholar 

  15. Grdeń M, Piaścik A, Koczorowski Z, Czerwiński A (2002) J Electroanal Chem 532:35

    Article  Google Scholar 

  16. Capon A, Parsons R (1975) J Electroanal Chem 65:285

    Article  CAS  Google Scholar 

  17. Kadirgan F, Beden B, Leger J-M, Lamy C (1981) J Electroanal Chem 125:89

    Article  CAS  Google Scholar 

  18. Dalbay N, Kadirgan F (1991) Electrochim Acta 36:353

    Article  CAS  Google Scholar 

  19. Guerin S, Attard GS (2001) Electrochem Commun 3:544

    Article  CAS  Google Scholar 

  20. Solla-Gullón J, Montiel V, Aldaz A, Clavilier J (2002) Electrochem Commun 4:716

    Article  Google Scholar 

  21. Conway BE, Angerstein-Kozlowska H, Czartoryska G (1978) Z Phys Chem N F 112:195

    CAS  Google Scholar 

  22. Łukaszewski M, Kuśmierczyk K, Kotowski J, Siwek H, Czerwiński A (2003) J Solid State Electrochem 7:69

    Google Scholar 

  23. Łukaszewski M, Czerwiński A (2003) Electrochim Acta 48:2435

    Article  CAS  Google Scholar 

  24. Beden B, Lamy C, Leger J-M (1979) Electrochim Acta 24:1157

    Article  CAS  Google Scholar 

  25. Woods R (1969) Electrochim Acta 14:632

    Article  CAS  Google Scholar 

  26. Gossner K, Mizera E (1981) J Electroanal Chem 125:359

    Article  CAS  Google Scholar 

  27. Gossner K, Mizera E (1982) J Electroanal Chem 140:47

    Article  CAS  Google Scholar 

  28. Nishimura K, Machida K, Enyo M (1988) J Electroanal Chem 257:217

    Article  CAS  Google Scholar 

  29. Nishimura K, Machida K, Enyo M (1988) J Electroanal Chem 251:103

    Article  CAS  Google Scholar 

  30. Enyo M (1985) J Electroanal Chem 186:155

    Article  CAS  Google Scholar 

  31. Kuśmierczyk K, Łukaszewski M, Rogulski Z, Siwek H, Kotowski J, Czerwiński A (2002) Pol J Chem 76:607

    Google Scholar 

  32. Breiter MW (1965) J Phys Chem 69:901

    CAS  Google Scholar 

  33. Breiter MW (1965) Electrochim Acta 10:543

    Article  CAS  Google Scholar 

  34. Woods R (1969) Electrochim Acta 14:533

    Article  CAS  Google Scholar 

  35. Woods R (1971) Electrochim Acta 16:655

    Article  CAS  Google Scholar 

  36. Rach E, Heitbaum J (1987) Electrochim Acta 32:1173

    Article  CAS  Google Scholar 

  37. Möller H, Pistorius PC (2004) J Electroanal Chem 570:243

    Article  CAS  Google Scholar 

  38. Barton JC, Green JAS, Lewis FA (1966) Trans Faraday Soc 62:960

    Article  CAS  Google Scholar 

  39. Lewis FA, McFall WD, Witherspoon TC (1973) Z Physik Chem N F 84:31

    CAS  Google Scholar 

  40. Sakamoto Y, Haraguchi Y, Ura M, Chen FL (1994) Ber Bunsenges Phys Chem 98:964

    CAS  Google Scholar 

  41. Żurowski A, Łukaszewski M, Czerwiński A (2006) Electrochim Acta (in press)

  42. Lewis FA (1967) The palladium–hydrogen system. Academic, London

    Google Scholar 

  43. Jerkiewicz G (1998) Prog Surf Sci 57:137

    Article  CAS  Google Scholar 

  44. Rand DAJ, Woods R (1972) J Electroanal Chem 35:209

    Article  CAS  Google Scholar 

  45. Jerkiewicz G (1999) In: Wieckowski A (ed) Interfacial electrochemistry. Marcel Dekker, New York, p 559

    Google Scholar 

  46. Conway BE (1995) Prog Surf Sci 49:331

    Article  CAS  Google Scholar 

  47. Czerwiński A, Sobkowski J, Więckowski A (1974) Int J Appl Radiat Isot 25:295

    Article  Google Scholar 

  48. Sobkowski J, Czerwiński A (1974) J Electroanal Chem 55:391

    Article  CAS  Google Scholar 

  49. Sobkowski J, Więckowski A, Zelenay P, Czerwiński A (1979) J Electroanal Chem 100:781

    Article  CAS  Google Scholar 

  50. Breiter MW (1984) J Electroanal Chem 180:25

    Article  CAS  Google Scholar 

  51. Czerwiński A, Sobkowski J (1978) J Electroanal Chem 91:47

    Article  Google Scholar 

  52. Czerwiński A, Sobkowski J, Kaczmarek A, Nowakowska M (1985) Anal Lett 18:1465

    Google Scholar 

  53. Czerwiński A (1988) J Electroanal Chem 252:189

    Article  Google Scholar 

  54. Vassilev YB, Bagotzky VS, Osetrova NV, Mikhailova AA (1985) J Electroanal Chem 189:311

    Article  CAS  Google Scholar 

  55. Czerwiński A (1994) J Electroanal Chem 379:487

    Article  Google Scholar 

  56. Zakharian AV, Osetrova NV, Vasiliev YB (1976) Electrokhimiya 12:1854

    Google Scholar 

  57. Marcos ML, González-Velasco J, Bolzán AE, Arvia AJ (1995) J Electroanal Chem 395:91

    Article  Google Scholar 

  58. Arévalo MC, Gomis-Bas C, Hahn F (1998) Electrochim Acta 44:1369

    Article  Google Scholar 

  59. Hoshi N, Ito H, Suzuki T, Hori Y (1995) J Electroanal Chem 395:309

    Article  Google Scholar 

  60. Lin W-F, Sun S-G (1996) Electrochim Acta 41:803

    Article  CAS  Google Scholar 

  61. Weaver MJ, Chang SC, Leung LWH, Jiang X, Rubel M, Szklarczyk M, Zurawski D, Wieckowski A (1992) J Electroanal Chem 327:247

    Article  CAS  Google Scholar 

  62. Gómez R, Rodes A, Pérez JM, Feliu JM, Aldaz A (1995) Surf Sci 327:202

    Article  Google Scholar 

  63. Gómez R, Rodes A, Pérez JM, Feliu JM, Aldaz A (1995) Surf Sci 344:85

    Article  Google Scholar 

  64. Czerwiński A, Zamponi S, Marassi R (1991) J Electroanal Chem 304:233

    Article  Google Scholar 

  65. Łukaszewski M, Grdeń M, Czerwiński A (2005) J Solid State Electrochem 1:9

    Google Scholar 

  66. Batirev IG, Leiro JA (1995) J Electron Spectrosc Rel Phen 71:79

    Article  CAS  Google Scholar 

  67. Leiro JA, Heinonen MH, Batirev IG (1995) Appl Surf Sci 90:515

    Article  CAS  Google Scholar 

  68. Bolzan A, Martins ME, Arvia AJ (1986) J Electroanal Chem 207:279

    Article  CAS  Google Scholar 

  69. Perdriel CL, Custidiano E, Arvia AJ (1988) J Electroanal Chem 246:165

    Article  CAS  Google Scholar 

  70. Łukaszewski M, Grdeń M, Czerwiński A (2004) Electrochim Acta 49:3161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially financially supported by the Department of Chemistry of Warsaw University and the Industrial Chemistry Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Czerwiński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Łukaszewski, M., Czerwiński, A. Electrochemical behavior of Pd–Rh alloys. J Solid State Electrochem 11, 339–349 (2007). https://doi.org/10.1007/s10008-006-0142-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0142-y

Keywords

Navigation