Skip to main content
Log in

High-performance supercapacitors of hydrous ruthenium oxide/mesoporous carbon composites

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The amorphous hydrous ruthenium oxide/mesoporous carbon composites (denoted as RuO2·xH2O/MC), obtained by loading small amount of amorphous hydrous ruthenium oxide nanoparticles ranged from 0.9 to 5.4% by weight of Ru (denoted as RuO2·xH2O) on mesoporous carbon (MC), were investigated for the first time and were used for supercapacitors. Electrochemical measurements showed that RuO2·xH2O/MC composites not only have an enhanced specific capacitance but also retain the superior rate capability of MC. The RuO2·xH2O/MC composite with Ru loading of 3.6 wt% exhibited an increase of the specific capacitance of approximately 57% (from 115 to 181 F/g) at the scan rate of 25 mV s−1 in 0.1 M H2SO4 aqueous electrolyte. The specific capacitance based on the mass of RuO2 was estimated to be 1,527 F/g, by subtracting the contribution from MC in the composite. Cycle performance tests for RuO2·xH2O/MC composite (3.6 wt% Ru) showed that approximately 2.8% loss of the total capacitance was observed after 1,000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fuertes AB, Lota G, Centeno TA, Frackowiak E (2005) Electrochim Acta 50:2799

    Article  CAS  Google Scholar 

  2. Wang CC, Hu CC (2005) J Electrochem Soc 152(2):A370

    Article  CAS  Google Scholar 

  3. Hu CC, Chen WC (2004) Electrochim Acta 49:3469

    Article  CAS  Google Scholar 

  4. Hu CC, Chen WC, Chang KH (2004) J Electrochem Soc 151(2):A281

    Article  CAS  Google Scholar 

  5. Zhang J, Jiang D, Chen B, Zhu J, Jiang L, Fang H (2001) J Electrochem Soc 148(12):A1362

    Article  CAS  Google Scholar 

  6. Fuertes AB, Pico F, Rojo JM (2004) J Power Sources 133:329

    Article  CAS  Google Scholar 

  7. Liu HY, Wang KP, Teng H (2005) Carbon 43:559

    Article  CAS  Google Scholar 

  8. Vix-Guterl C, Saadallah S, Jurewicz K, Frackowiak E, Reda M, Parmentier J, Patarin J, Beguin F (2004) Mater Sci Eng B108:148

    Article  CAS  Google Scholar 

  9. Vix-Guter C, Frackowiak E, Jurewicz K, Friebe M, Parmentier J, Bėguin F (2005) Carbon 43:1293

    Article  CAS  Google Scholar 

  10. Zhou H, Zhu S, Hibino M, Honma I (2003) J Power Sources 122:219

    Article  CAS  Google Scholar 

  11. Jurewicz K, Vix-Guterl C, Frackowiak E, Saadallah S, Reda M, Parmentier J, Patarin J (2004) J Phys Chem Solids 65:287

    Article  CAS  Google Scholar 

  12. Lee J, Kim J, Lee Y, Yoon S, Oh SM, Hyeon T (2004) Chem Mater 16(17):3323

    Article  CAS  Google Scholar 

  13. Kumar AS, Pillai KC (2000) J Solid State Electrochem 4:408

    Article  CAS  Google Scholar 

  14. Dharuman V, Pillai KC (2005) J Solid State Electrochem DOI 10.1007/s10008-005-0033-7

  15. Zheng JP, Jow TR (1995) J Electrochem Soc 142:L6

    Article  CAS  Google Scholar 

  16. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699

    Article  CAS  Google Scholar 

  17. Chen WC, Hu CC, Wang CC, Min CK (2004) J Power Sources 125:292

    Article  CAS  Google Scholar 

  18. Kim H, Popov BN (2002) J Power Sources 104:52

    Article  CAS  Google Scholar 

  19. Ramani M, Haran BS, White RE, Popov BN (2001) J Electrochem Soc 148(4):A374

    Article  CAS  Google Scholar 

  20. Hu CC, Huang YH (2001) Electrochim Acta 46:3431

    Article  CAS  Google Scholar 

  21. Hu CC, Chang KH (2002) J Power Sources 112:401

    Article  CAS  Google Scholar 

  22. Chang KH, Hu CC (2004) J Electrochem Soc 151(7):A958

    Article  CAS  Google Scholar 

  23. Panic V, Vidakovic T, Gojkovic S, Dekanski A, Milonjic S, Nikolic B (2003) Electrochim Acta 48:3805

    Article  CAS  Google Scholar 

  24. Arabale G, Wagh D, Kulkarni M, Mulla IS, Vernekar SP, Vijayamohanan K, Rao AM (2003) Chem Phys Lett 376:207

    Article  CAS  Google Scholar 

  25. Park JH, Ko JM, Park OO (2003) J Electrochem Soc 150(7):A864

    Article  CAS  Google Scholar 

  26. Kim JD, Kang BS, Noh TW, Yoon JG, Baik SI, Kim YW (2005) J Electrochem Soc 152(2):D23

    Article  CAS  Google Scholar 

  27. Miller JM, Dunn B, Tran TD, Pekala RW (1997) J Electrochem Soc 144(12):L309

    Article  CAS  Google Scholar 

  28. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) J Am Chem Soc 122:10712

    Article  CAS  Google Scholar 

  29. Dekanski A, Stevanovic J, Stevanovic R, Nikolic BZ, Jovanovic VM (2001) Carbon 39:1195

    Article  CAS  Google Scholar 

  30. Zuleta M, Bjo¨rnbom P, Lundblad A (2005) J Electrochem Soc 152(2):A270

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyu Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Liu, L., Xu, J. et al. High-performance supercapacitors of hydrous ruthenium oxide/mesoporous carbon composites. J Solid State Electrochem 11, 283–290 (2007). https://doi.org/10.1007/s10008-006-0105-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0105-3

Keywords

Navigation