Skip to main content
Log in

Improved electrooxidation of phenol at exfoliated graphite electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the presented paper, we report on electrochemical oxidation of phenol occurring at exfoliated graphite (EG) in alkaline solution. The mechanism of the electrocatalytic reaction of phenol oxidation was modified on adding methanol to the phenol-containing electrolyte. Using the voltammetry method, the influence of methanol additive on cyclic behavior of EG electrode was examined. A particular attention has been paid to the first two cycles when an abrupt decrease in electrocatalytic activity of various electrode materials has been observed. The results obtained showed that in the presence of methanol EG, electrode preserves its electrocatalytic activity for a longer time of phenol oxidation. In the absence of methanol in a phenol/KOH electrolyte, the charge of phenol oxidation peaks decreases sharply on cycling, whereas in the presence of methanol, the observed drop is considerably inhibited. The anodic charge attained for the 15th cycle of phenol oxidation in methanol-admixed electrolyte is the same as that for the third cycle recorded in methanol-free electrolyte. The thermogravimetric analysis (TG), Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) data showed that an improved electrocatalytic activity of EG can be accounted for by new chemical composition of oligomer film built on the EG surface with the participation of methanol and/or the products of its oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ayranci E, Conway BE (2001) J Electroanal Chem 513:100

    Article  CAS  Google Scholar 

  2. Santos A, Yustos P, Durbán B, García-Ochoa F (2001) Catal Today 66:511

    Article  CAS  Google Scholar 

  3. Renzi C, Guillard C, Herrmann J-M, Pichat P, Baldi G (1997) Chemosphere 35:819

    Article  CAS  Google Scholar 

  4. Sá CSA, Boaventura RAR (2001) Biochem Eng J 9:211

    Article  Google Scholar 

  5. Lapuente R, Cases F, Garcés P, Morallón E, Vázquez JL (1998) J Electroanal Chem 451:163

    Article  CAS  Google Scholar 

  6. Gonçalves D, Faria RC, Yonashiro M, Bulhões LOS (2000) J Electroanal Chem 487:90

    Article  Google Scholar 

  7. Eerskis Z, Jusys Z (2002) J Appl Electrochem 32:755

    Article  Google Scholar 

  8. Kuramitz H, Nakata Y, Kawasaki M, Tanaka S (2001) Chemosphere 45:37

    Article  PubMed  CAS  Google Scholar 

  9. Ureta-Zañartu MS, Bustos P, Berrios C, Diez MC, Mora ML, Gutiérrez C (2002) Electrochim Acta 47:2399

    Article  Google Scholar 

  10. Polcaro AM, Palmas S, Renoldi F, Mascia M (2000) Electrochim Acta 46:389

    Article  CAS  Google Scholar 

  11. Johnson DC, Feng J, Houk LL (2000) Electrochim Acta 46:323

    Article  CAS  Google Scholar 

  12. Kuramitz H, Saitoh J, Hattori T, Tanaka S (2002) Water Res 36:3323

    Article  PubMed  CAS  Google Scholar 

  13. Andreescu S, Andreescu D, Sadik OA (2003) Electrochem Commun 5:681

    Article  CAS  Google Scholar 

  14. Zanta CLPS, Michaud P-A, Comninellis C, Andrade AR, Boodts JFC (2002) J Appl Electrochem 33:1211

    Article  Google Scholar 

  15. Iniesta J, González-García J, Expósito E, Montiel V, Aldaz A (2001) Water Res 35:3291

    Article  PubMed  CAS  Google Scholar 

  16. Feng YJ, Li XY (2003) Water Res 37:2399

    Article  PubMed  CAS  Google Scholar 

  17. Cañizares P, García-Gómez J, Sáez C, Rodrigo MA (2003) J Appl Electrochem Part I 33:917

    Article  Google Scholar 

  18. Skowroński JM, Krawczyk P (2000) Proc 51th Annual Meeting of International Society of Electrochemistry Warszawa (extended abstracts), p 218

  19. Skowroński JM, Krawczyk P (2003) Eurocarbon (extended abstracts), Oviedo

  20. Skowroński JM, Krawczyk P (2004) J Solid State Electrochem 8:242

    Google Scholar 

  21. Glarum SH, Marshal JH, Hellman MY, Taylor GN (1987) J Electrochem Soc 134:81

    Article  CAS  Google Scholar 

  22. Gottrell M, Kirk DW (1992) J Electrochem Soc 139:2736

    Article  Google Scholar 

  23. Gottrell M, Kirk DW (1993) J Electrochem Soc 140:903

    Article  Google Scholar 

  24. Ežerskis Z, Jusys Z (2001) J Appl Electrochem Part I 31:1117

    Article  Google Scholar 

  25. Zhang H (2002) Chem Eng J 85:81

    Article  CAS  Google Scholar 

  26. Poon M, McCreery RL (1986) Anal Chem 58:2745

    Article  CAS  Google Scholar 

  27. Skowroński JM, Jurewicz K (1991) Synth Met 40:161

    Article  Google Scholar 

  28. Orozco G, Pérez MC, Rincón A, Gutiérrez C (2000) J Electroanal Chem 495:71

    Article  CAS  Google Scholar 

  29. Zawadzki J, Azambre B, Heintz O, Krztoñ A, Weber J (2000) Carbon 38:509

    Article  CAS  Google Scholar 

  30. Ramesh P, Sampath S (2001) Analyst 126:1872

    Article  PubMed  CAS  Google Scholar 

  31. Weng W, Chen G, Wu D, Lin Z, Yan W (2003) Synth Met 139:221

    Article  CAS  Google Scholar 

  32. Biniak S, Szamański G, Siedlewski J, Świątkowski A (1997) Carbon 35:1799

    Article  CAS  Google Scholar 

  33. László K, Tombácz E, Josepovitz K (2001) Carbon 39:1217

    Article  Google Scholar 

  34. Darmstadt H, Roy C, Kaliaguine S, Choi SJ, Ryoo R (2002) Carbon 40:2673

    Article  CAS  Google Scholar 

  35. Świątkowski A, Pakula M, Biniak S, Walczyk M (2004) Carbon 42:3057

    Article  CAS  Google Scholar 

  36. Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin, Brown NMD (2005) Carbon 43:153

    Article  CAS  Google Scholar 

  37. Su F, Lv L, Hui TM, Zhao XS (2005) Carbon 43:1156

    Article  CAS  Google Scholar 

  38. Harikumar KR, Rao CNR (1997) Catal Letters 47:265

    Article  CAS  Google Scholar 

  39. Edmundts A, Pirug G, Werner J, Bonzel HP (1998) Surf Sci 410:L727

    Article  Google Scholar 

  40. Kulkarni GU, Rao CNR (2003) Top Catal 22:183

    Article  CAS  Google Scholar 

  41. Werner H, Herein D, Schultz G, Wild U, Schlögl (1997) Catal Letters 49:109

    Article  CAS  Google Scholar 

  42. Bukhtiyarov VI, Prosvirin IP, Tikhomirov EP, Kaichev VV, Sorokin AM, Evstigneev VV (2003) React Kinet Catal Lett 79:181

    Article  CAS  Google Scholar 

  43. Prosvirin IP, Tikhomirov EP, Sorokin AM, Kaichev VV, Bukhtiyarov VI (2003) Kinet Catal 44:724

    Article  Google Scholar 

  44. Ramesh P, Bhagyalakshmi S, Sampath S (2004) J Colloid Interface Sci 274:95

    Article  PubMed  CAS  Google Scholar 

  45. Blyth RIR, Buqa H, Netzer FP, Ramey MG, Besenhard JO, Golob P, Winter M (2000) Appl Surf Sci 167:99

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the grant DS 31-084/05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Skowroński.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skowroński, J.M., Krawczyk, P. Improved electrooxidation of phenol at exfoliated graphite electrodes. J Solid State Electrochem 11, 223–230 (2007). https://doi.org/10.1007/s10008-005-0092-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0092-9

Keywords

Navigation