Skip to main content
Log in

Photoelectrochemical oxidation behavior of organic substances on TiO2 thin-film electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The photoelectrocatalytic oxidation characteristics of salicylic acid, formic acid and methanol on anodized nanoporous titanium dioxide (TiO2) thin-films were investigated by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. From dark to ultraviolet illumination, the open circuit potential (OCP) and film resistance of TiO2 films decreased markedly. A general equivalent circuit model was proposed for the photoelectrochemical system anodic TiO2 thin-film electrode/test solution. The photoelectrochemical oxidation process of the organic compounds showed similar impedance features at OCP and was controlled by the charge transfer step. According to the polarization curves of the base solution and organic solutions, the kinetic rate curves for the photoelectrocatalytic oxidation of pure organic species were obtained as a function of the potential bias. One photooxidation peak was first observed at a bias potential of ca. 0.26 V for these species with low concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C: Photochem Rev 1:1

    Article  CAS  Google Scholar 

  2. Mills A, Hunte SL (1997) J Photochem Photobiol A: Chem 108:1

    Article  CAS  Google Scholar 

  3. Dominguez C, Garcia J, Pedraz MA, Torres A, Galan MA (1998) Catal Today 40:85

    Article  CAS  Google Scholar 

  4. Malato S, Blanco J, Vidal A, Richter C (2002) Appl Catal B: Environ 37:1

    Article  CAS  Google Scholar 

  5. Goslich R, Dillert R, Bahnemann D (1997) Wat Sci Tech 35:137

    Article  CAS  Google Scholar 

  6. Feitz AJ, Boyden BH, Waite TD (2000) Wat Res 36:3927

    Article  Google Scholar 

  7. Lin WY, Tacconi NR, Smith RL, Rajeshwar K (1997) J Electrochem Soc 144:497

    Article  CAS  Google Scholar 

  8. Byrne JA, Eggins BR, Brown NMD, McKinney B, Rouse M (1998) Appl Catal B: Environ 17:25

    Article  CAS  Google Scholar 

  9. Dijkstra MFJ, Buwalda H, Jong AWF, Michorius A, Winkelman JGM, Beenackers AACM (2001) Chem Eng Sci 56:547

    Article  CAS  Google Scholar 

  10. Chan AHC, Chan CK, Barford JP, Porter JF (2003) Wat Res 37:1125

    Article  CAS  Google Scholar 

  11. Candal RJ, Zeltner WA, Anderson MA (2000) Environ Sci Technol 34:3443

    Article  CAS  Google Scholar 

  12. Butterfield IM, Christensen PA, Hamnett A, Shaw KE, Walker GM, Walker SA (1997) J Appl Electrochem 27:385

    Article  CAS  Google Scholar 

  13. Kim DH, Anderson MA (1994) Environ Sci Technol 28:479

    Article  CAS  Google Scholar 

  14. Vinodgopal K, Stafford U, Gray KA, Kamat PV (1994) J Phys Chem 98:6797

    Article  CAS  Google Scholar 

  15. Byrne JA, Eggins BR (1998) J Electroanal Chem 457:61

    Article  CAS  Google Scholar 

  16. Zhang W, An T, Xiao X, Fu J, Sheng G, Cui M, Li G (2003) Appl Catal A: Gen 255:221

    Article  CAS  Google Scholar 

  17. Li XZ, Li FB (2002) J Appl Electrochem 32:203

    Article  CAS  Google Scholar 

  18. Leng W, Liu H, Cheng S, Zhang J, Cao C (2000) J Photochem Photobiol A: Chem 131:125

    Article  Google Scholar 

  19. Liu H, Li XZ, Leng YJ, Li WZ (2003) J Phys Chem B 107:8988

    Article  CAS  Google Scholar 

  20. Liu H, Cheng S, Wu M, Wu H, Zhang J, Li W, Cao C (2000) J Phys Chem A 104:7016

    Article  CAS  Google Scholar 

  21. Jiang D, Zhao H, Zhang S, John R, Will GD (2003) J Photochem Photobiol A: Chem 156:201

    Article  CAS  Google Scholar 

  22. Calvo ME, Candal RJ, Bilmes SA (2001) Environ Sci Technol 35:4132

    Article  PubMed  CAS  Google Scholar 

  23. Mandelbaum P, Bilmes SA, Regazzoni AE, Blesa MA (1999) Solar Energy 65:75

    Article  CAS  Google Scholar 

  24. Selcuk H, Zaltner W, Sene JJ, Bekbolet M, Anderson MA (2004) J Appl Electrochem 34:653

    Article  CAS  Google Scholar 

  25. Abdullah M, Low GKC, Matthews RW (1990) J Phys Chem 94:6820

    Article  CAS  Google Scholar 

  26. B.A. Boukamp (Oct. 1989) Proceedings of the ninth European Corros Cong, EFC, Vol. 1, Paper No. FU-252, Utrecht, The Netherlands

  27. Birch JR, Burleigh TD (2000) Corrosion 56:1233

    Article  CAS  Google Scholar 

  28. Arsov LD, Kormann C, Plieth W (1991) J Electrochem Soc 138:2964

    Article  CAS  Google Scholar 

  29. Sclafani A, Herrmann JM (1996) J Phys Chem 100:13655

    Article  CAS  Google Scholar 

  30. Sul YT, Johansson CB, Jeong Y, Albrektsson T (2001) Med Eng Phys 23:329

    Article  PubMed  CAS  Google Scholar 

  31. Hattori A, Tokihisa Y, Tada H, Tohge N, Ito S, Hongo K, Shiratsuchi R, Nogami G (2001) J Sol-Gel Sci Technol 22:53

    Article  CAS  Google Scholar 

  32. Leng WH, Zhang Z, Zhang JQ (2003) J Mol Catal A: Chem 206:239

    Article  CAS  Google Scholar 

  33. Li MC, Zeng CL, Lin HC, Cao CN (2001) Bull Electrochem 17:299

    Article  CAS  Google Scholar 

  34. Burleigh TD, Smith AT (1991) J Electrochem Soc 138:L34

    Article  CAS  Google Scholar 

  35. Li MC, Luo SZ, Zeng CL, Shen JN, Lin HC, Cao CN (2004) Corros Sci 46:1369

    Article  CAS  Google Scholar 

  36. Byrne JA, Davidson A, Dunlop PSM, Eggins BR (2002) J Photochem Photobiol A: Chem 148:365

    Article  CAS  Google Scholar 

  37. Li MC, Luo SZ, Wu PF, Shen JN (2005) Electrochim Acta 50:3401

    Article  CAS  Google Scholar 

  38. Kratochvilova K, Hoskovcova I, Jirkovsky J, Llima J, Ludvik J (1995) Electrochim Acta 40:2603

    Article  CAS  Google Scholar 

  39. Vanmaekelbergh D (1997) Electrochim Acta 42:1121

    Article  CAS  Google Scholar 

  40. Wu X, Ma H, Chen S, Xu Z, Sui A (1999) J Electrochem Soc 146:1847

    Article  CAS  Google Scholar 

  41. Eppler AM, Ballard IM, Nelson J (2002) Phys E 14:197

    Article  CAS  Google Scholar 

  42. Jiang D, Zhao H, Jia Z, Cao J, John R (2001) J Photochem Photobiol A: Chem 144:197

    Article  CAS  Google Scholar 

  43. Jiang D, Zhao H, Zhang S, John R (2003) J Phys Chem B 107:12774

    Article  CAS  Google Scholar 

  44. Freund T, Gomes WP (1969) Catal Rev 3:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (NSFC) and Shanghai BaoSteel Company (Grant No. 50471105), Shanghai Science & Technology Council (0352nm074), and Shanghai Municipal Education Commission (04AE96).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mou Cheng Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M.C., Shen, J.N. Photoelectrochemical oxidation behavior of organic substances on TiO2 thin-film electrodes. J Solid State Electrochem 10, 980–986 (2006). https://doi.org/10.1007/s10008-005-0043-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0043-5

Keywords

Navigation