Skip to main content
Log in

Simultaneous determination of dopamine and ascorbic acid on poly (3,4-ethylenedioxythiophene) modified glassy carbon electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Detection of dopamine (DA) in the presence of excess of ascorbic acid (AA) has been demonstrated using a conducting polymer matrix, poly (3,4-ethylenedioxythiophene) (PEDOT) film in neutral buffer (PBS 7.4) solution. The PEDOT film was deposited on a glassy carbon electrode by electropolymerization of EDOT from acetonitrile solution. Atomic force microscopy studies revealed that the electrodeposited film was found to be approximately 100 nm thick with a roughness factor of 2.6 nm. Voltammetric studies have shown catalytic oxidation of DA and AA on PEDOT modified electrode and can afford a peak potential separation of ∼0.2 V. It is speculated that the cationic PEDOT film interacts with the negatively charged ascorbate anion through favorable electrostatic interaction, which results in pre-concentration at a less anodic value. The positively charged DA tends to interact with the hydrophobic regions of PEDOT film through hydrophobic–hydrophobic interaction thus resulting in favorable adsorption on the polymer matrix. Further enhancement in sensitivity to micro molar level oxidation current for DA/AA oxidation was achieved by square wave voltammetry (SWV) which can detect DA at its low concentration of 1 μM in the presence of 1000 times higher concentration of AA (1 mM). Thus the PEDOT modified electrode exhibited a stable and sensitive response to DA in the presence of AA interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Swager TM (1998) Acc Chem Res 31:201

    Article  CAS  Google Scholar 

  2. Mark HB, Atta N, Petticrew KL, Zimmer H, Shi Y, Lunsford SK, Rubinson JF, Galal A (1995) Bioelectrochem Bioenergetics 38:229

    Article  CAS  Google Scholar 

  3. Krishnamoorthy K, Gokhale RS, Contractor AQ, Kumar A (2004) Chem Commun 7:820

    Article  CAS  Google Scholar 

  4. Yamato H, Ohwa M, Wernet W (1995) J Electroanal Chem 397:163

    Article  Google Scholar 

  5. Grönendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Adv Mater12:481

    Article  Google Scholar 

  6. Sakmeché A, Aaron JJ, Fall M, Aeiyach A, Jouini M, Lacroix JC, Lacaze PC (1996) Chem Commun 2723

  7. Vasantha VS, Phani KLN (2002) J Electroanal Chem 520:79

    Article  CAS  Google Scholar 

  8. Dietrich M, Heinze J, Heywang G, Jonas F (1994) J Electroanal Chem 369:87

    Article  CAS  Google Scholar 

  9. Grönendaal LB, Zotti G, Aubert P-H, Waybright SM, Reynolds JR (2003) Adv Mater 15:855

    Article  CAS  Google Scholar 

  10. Venton BG, Wightman RM (2003) Anal Chem 75:414A

    Article  CAS  Google Scholar 

  11. Zhang L, Sun Y-G (2001) Anal Sci 17:939

    Article  PubMed  CAS  Google Scholar 

  12. Wen X-L, Jia Y-H, Liu Z-Li (1999) Tatlanta 50:1027

    Article  CAS  Google Scholar 

  13. Wang J, Walcarius A (1996) J Electroanal Chem 407:183

    Article  Google Scholar 

  14. Ferreira M, Dinelli LR, Wohnrath K, Batista AA, Oliveira ON Jr (2004) Thin Solid Films 446:301

    Article  CAS  Google Scholar 

  15. Wang J, Tuzhi P (1986) Anal Chem 58:3257

    Article  PubMed  CAS  Google Scholar 

  16. Oni J, Nyokong T (2001) Anal Chim Acta 434:9

    Article  CAS  Google Scholar 

  17. Dalmia A, Liu CC, Savinell RF (1997) J Electroanal Chem 430:205

    Article  CAS  Google Scholar 

  18. Chen MA, Li HL (1998) Electroanalysis 10:477

    Article  CAS  Google Scholar 

  19. Raj CR, Tokuda K, Ohsaka T (2001) Bioelectrochem 53:83

    Article  Google Scholar 

  20. Arrigan DWA, Ghita M, Beni V (2004) Chem Commun 732

  21. Senthilkumar S, Mathiyarasu J, Lakshminarasimha Phani K (2005) J Electroanal Chem 578:95

    Article  CAS  Google Scholar 

  22. Kvarnström C, Neugebauer H, Blomquist S, Ahonen HJ, Kankare J, Ivaska A (1999) Electrochim Acta 44:2737

    Article  Google Scholar 

  23. Lee HJ, Park S-M (2004) J Phys Chem B 108:16365

    Article  CAS  Google Scholar 

  24. Giz MJ, de Albuquerque Matanhao SL, Torresi RM (2000) Electrochemistry Communicaitons 2:377

    Article  CAS  Google Scholar 

  25. Roy PR, Okajima T, Ohsaka T (2003) Bioelectrochemistry 59:11

    Article  PubMed  CAS  Google Scholar 

  26. Saraceno RA, Pack JG, Ewing AG (1986) J Electroanal Chem 197:265

    Article  CAS  Google Scholar 

  27. Martin CR, Van Dyke LS (1992) Mass and charge transport in electronically conductive polymers. In: Murray RW (ed) Molecular design of electrode surfaces. John Wiley, New York, pp 403–424

    Google Scholar 

  28. Lyons MEG (1994) Charge Percolation in Electroactive Polymers. In: Lyons MEG (ed) Electroactive polymer electrochemistry Part I. Plenum Press, New York, pp 65–116

    Google Scholar 

  29. Schöpf G, Kößmehl G (1997) Polythiophenes–electrically conductive polymers. Springer, Germany, 80p

    Google Scholar 

  30. Beer PD, Gale PA (2001) Angew Chem Int Ed 40:486

    Article  CAS  Google Scholar 

  31. Gao Z, Huang H (1998) Chem Commun 2107

  32. Bone RGA, Villar HO (1995) J Mol Graph 13:201

    Article  PubMed  CAS  Google Scholar 

  33. Anjo DM, Kahr M, Khodabakhsh MM, Nowinski S, Wanger M (1989) Anal Chem 61:2603

    Article  CAS  Google Scholar 

  34. Higgins SJ, Lovell KV, Rajapakse RMG, Walsby NM (2003) J Mater Chem 13:2485

    Article  CAS  Google Scholar 

  35. Gough DA, Leypoldt JK (1979) Anal Chem 51:439

    Article  CAS  Google Scholar 

  36. Gerhardt G, Adams RN (1982) Anal Chem 54:2618

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (J.M) thanks the Department of Science & Technology, New Delhi for a research grant under SERC Fast Track Scheme No. SR/FTP/CS-35/2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mathiyarasu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S.S., Mathiyarasu, J., Phani, K.L.N. et al. Simultaneous determination of dopamine and ascorbic acid on poly (3,4-ethylenedioxythiophene) modified glassy carbon electrode. J Solid State Electrochem 10, 905–913 (2006). https://doi.org/10.1007/s10008-005-0041-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0041-7

Keywords

Navigation