Skip to main content
Log in

Electrochemical characterization of glassy carbon electrodes modified with hybrid inorganic-organic single-layer of α-Keggin type polyoxotungstates

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

It has been demonstrated, for the first time, that an adsorbed single-layer of the hybrid salts (TBA)4H3PW11O39, (TBA)4PW11Fe(H2O)O39, (TBA)4PW11Mn(H2O)O39 and (TBA)4HPW11Co(H2O)O39 can be fabricated on the surface of a glassy carbon electrode by the droplet evaporation methodology. These chemically modified electrodes were stable and their preparation was reproducible and easy to perform. The electrochemical features of the immobilized polyanions were different from those of the corresponding soluble species, namely in what concerns the peak potential values. The effect of the scan rate and of pH on the voltammetric features led to the conclusion that the first W reduction process for all immobilized polyanions was diffusion-controlled. For TBA-PW11, TBA-PW11Fe and TBA-PW11Co the two-electron reductions at the first W waves are accompanied by the uptake of protons (2 H+ for the PW11 anion and 4 H+ for the Fe-substituted and Co-substituted species). For the PW11Mn-modified electrode, the reduction at the first W wave was a 1 e/2 H+ process. Additionally, the results obtained in the presence of Na2SO4 in the solution highlighted the role of the ions in the supporting electrolyte in the redox features of the immobilized hybrid phosphotungstates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hill CL, Prosser-McCartha CM (1995) Coord Chem Rev 143:407

    Article  Google Scholar 

  2. Neumann R (1998) Prog Inorg Chem 47:317

    Google Scholar 

  3. Sadakane M, Steckhan E (1998) Chem Rev 98:219

    Article  PubMed  Google Scholar 

  4. Mizuno N, Misono M (1998) Chem Rev 98:199

    Article  PubMed  Google Scholar 

  5. Clemente-Juan JM, Coronado E (1999) Coord Chem Rev 193–195:361

    Article  Google Scholar 

  6. Gomez-Romero P (2001) Adv Mater 13:163

    Article  Google Scholar 

  7. Rhule JT, Hill CL, Judd DA (1998) Chem Rev 98:327

    Article  PubMed  Google Scholar 

  8. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, Berlin Heidelberg NewYork

    Google Scholar 

  9. Baker LCW, Glick DC (1998) Chem Rev 98:3

    Article  PubMed  Google Scholar 

  10. Himeno S, Takamoto M, Ueda T (1999) J Electroanal Chem 465:129

    Article  Google Scholar 

  11. Himeno S, Takamoto M, Ueda T (2000) J Electroanal Chem 485:49

    Article  Google Scholar 

  12. Balula MS, Gamelas JA, Carapuça HM, Cavaleiro AMV, Schlindwein W (2004) Eur J Inorg Chem 619

  13. Gamelas JAF, Balula MS, Carapuça HM, Cavaleiro AMV (2003) Electrochem Commun 5:378

    Article  Google Scholar 

  14. Keita B, Nadjo L (1988) J Electroanal Chem 243:87

    Article  Google Scholar 

  15. Reibier K, Malugani J-P, Fantini S, Herlem M, Fahys B (2002) J Electrochem Soc 149:E96

    Article  Google Scholar 

  16. Fabre B, Bidan G (1997) J Chem Soc Faraday Trans 93:591

    Article  Google Scholar 

  17. McCormac T, Farrell D, Drennan D, Bidan G (2001) Electroanalysis 13:836

    Article  Google Scholar 

  18. Kasem KK, Schultz FA (1995) Can J Chem 73:858

    Google Scholar 

  19. Mahmoud A, Keita B, Nadjo L, Oung O, Contant R, Brown S, Kouchkovski Y (1999) J Electroanal Chem 463:129

    Article  Google Scholar 

  20. Gaspar S, Mursen A, Patrut A, Popescu IC (1999) Anal Chim Acta 385:111

    Article  Google Scholar 

  21. Martel D, Kuhn A (2000) Electrochim Acta 45:1829

    Article  Google Scholar 

  22. Kuhn A, Mano N, Vidal C (1999) J Electroanal Chem 462:187

    Article  Google Scholar 

  23. Wang B, Dong S (1992) J Electroanal Chem 328:245

    Article  Google Scholar 

  24. Lui JY, Cheng L, Dong SJ (2002) Electroanalysis 14:569

    Article  Google Scholar 

  25. Wang P, Wang X, Bi L, Zhu G (2000) Analyst 125:1291

    Article  Google Scholar 

  26. Wang XL, Wang EB, Lan Y, Hu CW(2002) Electroanalysis 14:1116

    Article  Google Scholar 

  27. Wang P, Wang X, Jing X, Zhu G (2000) Anal Chim Acta 424:51

    Article  Google Scholar 

  28. Wang XL, Wang EB, Hu CW (2001) Chem Lett 10:1030

    Article  Google Scholar 

  29. Wang X, Kang Z, Wang E, Hu C (2002) Mater Lett 56:393

    Google Scholar 

  30. Wang X, Kang Z, Wang E, Hu C (2002) J Electroanal Chem 523:142

    Article  Google Scholar 

  31. Liu SQ, Shi Z, Dong SJ (1998) Electroanalysis 10:891

    Article  Google Scholar 

  32. Prodromidis MI, Veltsistas PG, Efstathiou CE, Karayannis MI (2001) Electroanalysis 13:960

    Article  Google Scholar 

  33. Cavaleird AMV, Pedrosa DE, Yesus YD, Nogueira HIS (1999) In: Braunstein P, Oro LA, Raithby PR (eds) Metal clusters in chemistry, vol 1. Wiley-VCH, Whinheim

  34. Shiu KK, Anson FC (1991) J Electroanal Chem 309:115

    Article  Google Scholar 

  35. Sun W, Zhang S, Liu H, Jin L, Kong J (1999) Anal Chim Acta 388:103

    Article  Google Scholar 

  36. Sun W, Zhang S, Lin X, Jin L, Jin S, Deng J, Kong J (1999) J Electroanal Chem 469:63

    Article  Google Scholar 

  37. Simões MMQ, Conceição CMM, Gamelas JAF, Domingues PMDN, Cavaleiro AMV, Cavaleiro JAS, Ferrer-Correia AJV, Johnstone RAW (1999) J Mol Catal A Chem 144:461

    Article  Google Scholar 

  38. Couto FARS, Cavaleiro AMV, Pedrosa de Jesus JD, Simão JEJ (1998) Inorg Chim Acta 281:225

    Article  Google Scholar 

  39. Sadakane M, Steckhan E (1996) J Mol Catal A Chem 114:221

    Article  Google Scholar 

  40. Müller A, Dloczick L, Diemann E, Pope MT (1997) Inorg Chim Acta 257:231

    Article  Google Scholar 

  41. Cheng L, Sun H, Liu B, Liu J, Dong S (1999) J Chem Soc Dalton Trans 2619

    Google Scholar 

  42. Zhang X, Pope MT, Chance MR, Jameson GB (1995) Polyhedron 14:1381

    Article  Google Scholar 

  43. Holmstrom SD, Karwowska B, Cox JA, Kulesza PJ (1998) J Electroanal Chem 456:239

    Article  Google Scholar 

  44. Cox JA, Wolkiewicz AM, Kulesza PJ (1998) J Solid State Electrochem 2:247

    Article  Google Scholar 

  45. Keita B, Lu YW, Nadjo L, Contant R (2000) Eur J Inorg Chem 12:2463

    Article  Google Scholar 

  46. Keita B, Nadjo L (1987) J Electroanal Chem 230:267

    Article  Google Scholar 

  47. Toth JE, Anson FC (1988) J Electroanal Chem 256:361

    Article  Google Scholar 

  48. Himeno S, Takamoto M (2002) J Electroanal Chem 528:170

    Article  Google Scholar 

  49. Papadakis A, Souliotis A, Papaconstantinou E (1997) J Electroanal Chem 435:17

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to the University of Aveiro, Fundação para a Ciência e a Tecnologia (FCT) and CICECO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena M. Carapuça.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carapuça, H.M., Balula, M.S., Fonseca, A.P. et al. Electrochemical characterization of glassy carbon electrodes modified with hybrid inorganic-organic single-layer of α-Keggin type polyoxotungstates. J Solid State Electrochem 10, 10–17 (2006). https://doi.org/10.1007/s10008-004-0641-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0641-7

Keywords

Navigation