Skip to main content

Advertisement

Log in

Simultaneous oscillations of surface energy, superficial mass and electrode potential in the course of galvanostatic oxidation of formic acid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Simultaneous oscillations of electrode potential, surface mass and specific surface energy have been detected in the course of galvanostatic oxidation of formic acid on platinum by using a Koesters laser interferometer combined with an electrochemical quartz crystal microbalance. Changes of surface energy data measured with the electrochemical Koesters laser interferometer and with the electrochemical bending beam technique are shown to be equivalent. Problems related to the interpretation of the measured data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wojtowitz J (1972) Oscillatory behaviour in electrochemical systems. In: Bockris JO, Conway BE (eds) Modern aspects of electrochemistry, vol 8. Plenum, New York

  2. Franck UF (1974) Faraday Symp Chem Soc 9:137

    Google Scholar 

  3. Láng GG, Ueno K, Ujvári M, Seo M (2000) J Phys Chem B 104:2785

    Google Scholar 

  4. Okamoto H, Tanaka N, Naito M (1998) J Phys Chem A 102:7343

    Article  CAS  Google Scholar 

  5. Okamoto H, Tanaka N, Naito M (1998) J Phys Chem A 102:7353

    Article  CAS  Google Scholar 

  6. Cui H, Chen S, Zhao S, Wang C (2001) J Serb Chem Soc 66:881

    Google Scholar 

  7. Langa S, Carstensen J, Tiginyanu IM, Christophersen M, Foll H (2001) Electrochem Solid State Lett 4:G50

    Google Scholar 

  8. Li ZL, Niu ZJ, Wu TH, Nie HD, Xiao XM (2003) Electrochem Commun 5:297

    Google Scholar 

  9. Darowicki K, Krakowiak A, Zielinski A (2003) Russ J Electrochem 39:935

    Google Scholar 

  10. Chen A, Miller B (2004) J Phys Chem B 108:2245

    Google Scholar 

  11. Krischer K (2003) Nonlinear dynamics in electrochemical systems. In: Alkire RC, Kolb DM (eds) Advances in electrochemical science and engineering, vol 8. Wiley-VCH, Weinheim, pp 89–208

  12. Horányi G, Inzelt G, Szetey E (1978) Acta Chim Acad Sci Hung 97:299

    Google Scholar 

  13. Inzelt G, Kertész V (1995) Electrochim Acta 40:221

    Google Scholar 

  14. Koper M, Hachkar M, Beden BJ (1996) Chem Soc Farad Trans 92:3975

    Google Scholar 

  15. Albahadily FN, Schell M (1991) J Electroanal Chem 308:151

    Google Scholar 

  16. Naito M, Okamoto H, Tanaka N (2000) Phys Chem Chem Phys 2:1193

    Google Scholar 

  17. Albahadily FN, Schell M (1991) J Electroanal Chem 308:151

    Google Scholar 

  18. Strasser P, Eiswirth M, Ertl G (1997) J Chem Phys 107:991

    Google Scholar 

  19. Okamoto H, Tanaka N, Naito M (1996) Chem Phys Lett 248:289

    Article  CAS  Google Scholar 

  20. Naito M, Okamoto H, Tanaka N (2000) Phys Chem Chem Phys 2:1193

    Google Scholar 

  21. Horányi G, Inzelt G (1978) J Electroanal Chem 87:423

    Article  Google Scholar 

  22. Conway BE, Novak DM (1977) J Phys Chem 81:1459

    Google Scholar 

  23. Kertész V, Inzelt G, Barbero C, Kötz R, Haas O (1995) J Electroanal Chem 392:91

    Google Scholar 

  24. Inzelt G, Kertész V, Láng G (1993) J Phys Chem 97:6104

    Google Scholar 

  25. Trasatti S, Parsons R (1986) Pure Appl Chem 58:437

    Google Scholar 

  26. Ya A (1976) Gokhshtein, in “Surface Tension of Solids and Adsorption”. Nauka, Moscow

    Google Scholar 

  27. Seo M, Makino T, Sato N (1986) J Electrochem Soc 133:1138

    Google Scholar 

  28. Seo M, Jiang XC, Sato N (1987) J Electrochem Soc 134:3094

    Google Scholar 

  29. Morcos I (1978) “Specialist Periodical Reports Electrochemistry”, vol 6. In: Thirsk HR (ed) The Chemical Society, Burlington House, London,

  30. Jaeckel L, Láng G, Heusler KE (1994) Electrochim Acta 39:1081

    Google Scholar 

  31. Láng G, Heusler KE (1995) J Electroanal Chem 391:169

    Google Scholar 

  32. Ibach H (1997) Surface Sci Rep 29:193

    Google Scholar 

  33. Heusler KE, Láng G (1997) Electrochim Acta 42:747

    Google Scholar 

  34. Láng GG, Seo M (2000) J Electroanal Chem 490:98

    Google Scholar 

  35. Haiss W (2001) Rep Prog Phys 64:591

    Google Scholar 

  36. Ueno K, Seo M (1999) J Electrochem Soc 146:1496

    Google Scholar 

  37. Heusler KE, Láng G (1997) Electrochim Acta 42:747

    Google Scholar 

  38. Láng G, Heusler KE (1997) J Chem Soc Farad Trans 93:583

    Google Scholar 

  39. Heusler KE, Lang G (1995) Elektrokhimiya 31:826

    Google Scholar 

  40. Janda M, Stefan O (1984) Thin Solid Films 112:127

    Google Scholar 

  41. Sauerbrey G (1959) Z Phys 155:206

    CAS  Google Scholar 

  42. Stoney GG (1909) Proc R Soc Lond A 32:172

    Google Scholar 

  43. Suhir E (1988) J Appl Mech 55:143

    Google Scholar 

  44. Moulard G, Contoux G, Gardet G, Motyl G, Courbon M (1997) Surf Coat Technol 97:206

    Google Scholar 

  45. Moulard G, Contoux G, Motyl G, Gardet G, Courbon M (1998) J Vac Sci Technol A 16:736

    Google Scholar 

  46. Láng GG, Ueno K, Ujvári M, Seo M (2000) J Phys Chem B 104:2785

    Google Scholar 

  47. Láng GG, Seo M (2000) J Electroanal Chem 490:98

    Google Scholar 

  48. Okamoto H, Tanaka H (1992) Electrochim Acta 37:37

    Google Scholar 

  49. Beck TR, Lin K-F (1979) J Electrochem Soc 126:252

    Google Scholar 

  50. Chu SNG (1998) J Electrochem Soc 145:3621

    Google Scholar 

  51. Klein CA (2000) J Appl Phys 88:5487

    Google Scholar 

  52. Ya Vasina S, Petrii OA (1970) Elektrokhimiya 6:242

    Google Scholar 

  53. Horányi G, Vértes G (1975) J Electroanal Chem 64:252

    Google Scholar 

  54. Bakos I, Horányi G (1992) J Electroanal Chem 332:147

    Google Scholar 

  55. Horányi G, Bakos I (1992) React Kinet Catal Lett 46:139

    Google Scholar 

  56. Horányi G, Bakos I (1992) J Electroanal Chem 331:727

    Google Scholar 

  57. Láng GG, Horányi G (2003) J Electroanal Chem 552:197

    Google Scholar 

Download references

Acknowledgements

Financial support by the National Scientific Research Fund OTKA T037588, M042115, Alexander von Humboldt Stiftung, and the Japan Society for the Promotion of Science (JSPS) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Láng.

Additional information

Dedicated to Professor György Horányi on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Láng, G.G., Seo, M. & Heusler, K.E. Simultaneous oscillations of surface energy, superficial mass and electrode potential in the course of galvanostatic oxidation of formic acid. J Solid State Electrochem 9, 347–353 (2005). https://doi.org/10.1007/s10008-004-0625-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0625-7

Keywords

Navigation