Skip to main content
Log in

Electrooxidation of phenol at exfoliated graphite electrode in alkaline solution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present paper reports on exfoliated graphite (EG) used for the cyclic electrochemical process of phenol oxidation in alkaline solution. It is shown that the electrochemical activity of anode-produced EG decreases considerably in the second cycle due to the deposition of an oligomer film, composed of the products of phenol oxidation, on the EG surface. Thermal treatment of the inactive graphite anode in air at 500 °C provided a regenerated material of activity three times higher for the first cycle and 2.6 times higher for three cycles as compared to the original anode. The reason for such a behavior is assigned to a carbon film formed on the EG surface during the carbonization/oxidation processes involving the products of phenol oxidation. Comparative studies showed that electroactivity of the original EG can also be enhanced if before the process of phenol oxidation the original EG is activated by heat treatment. Unfortunately, the electrochemical activity of the product of such a treatment is higher only for the first cycle of phenol oxidation and drops dramatically in the following cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Skowroński JM (1988) Carbon 26:613

    Article  Google Scholar 

  2. Bourelle E, Douglade J, Metrot A (1994) Mol Cryst Liq Cryst 244:227

    CAS  Google Scholar 

  3. Bourelle E, Claude-Montigny B, Metrot A (1998) Mol Cryst Liq Cryst 310:321

    CAS  Google Scholar 

  4. Skowroński JM (1988) J Mater Sci 23:2243

    Google Scholar 

  5. Chung DDL (1987) J Mater Sci 22:4190

    CAS  Google Scholar 

  6. Celzard A, McRae E, Marache JF, Furdin G, Dufort M, Deleuze C (1996) J Phys Chem Solids 57:715

    Article  CAS  Google Scholar 

  7. Toyoda M, Moriya K, Lizawa J, Konno H, Inagaki M (2000) Desalination 128:205

    Article  CAS  Google Scholar 

  8. Inagaki M, Konno H, Toyoda M, Moriya K, Kitara T (2000) Desalination 12:213

    Article  Google Scholar 

  9. Inagaki M, Shibata K, Setou S, Toyoda M, Lizawa J (2000) Desalination 128:219

    Article  CAS  Google Scholar 

  10. Tryba B, Kaleńczuk RJ, Kang F, Inagaki M, Morawski AW (2000) Mol Cryst Liq Cyst 340:113

    CAS  Google Scholar 

  11. Toyoda M, Inagaki M (2000) Carbon 38:199

    Article  CAS  Google Scholar 

  12. Gottrell M, Kirk DW (1992) J Electrochem Soc 139:2736

    Google Scholar 

  13. Gottrell M, Kirk DW (1993) J Electrochem Soc 140:903

    Google Scholar 

  14. Lapuente R, Cases F, Garcés P, Morallón E, Vázquez JL (1998) J Electroanal Chem 451:163

    Article  CAS  Google Scholar 

  15. Iotov PI, Kalcheva SV (1998) J Electroanal Chem 442:19

    Article  CAS  Google Scholar 

  16. Boudenne JL, Cerclier O, Galéa J, Van der Vlist E (1996) Appl Catal A: General 143:85

    Google Scholar 

  17. Boudenne JL, Cerclier O, Galéa J, Van der Vlist E (1998) J Electrochem Soc 145:2763

    CAS  Google Scholar 

  18. Kuramitz H, Nakata Y, Kawasaki M, Tanaka S (2001) Chemosphere 45:37

    Article  CAS  PubMed  Google Scholar 

  19. Ureta-Zañartu MS, Bustos P, Berrios C, Diez MC, Mora ML, Gutiérrez C (2002) Electrochim Acta 47:2399

    Article  Google Scholar 

  20. Salvador F, Sánchez Jiménez C (1996) Carbon 34:511

    Article  CAS  Google Scholar 

  21. Chiang PC, Chung EE, Wu JS (1997) Water Sci Technol 35:279

    Article  CAS  Google Scholar 

  22. Matatov-Meytal Yu, Sheintuch M, Shiter GE, Grader GS (1997) Carbon 35:1527

    Article  CAS  Google Scholar 

  23. Salvador F, Sánchez Jiménez C (1999) Carbon 37:577

    Article  CAS  Google Scholar 

  24. Sheintuch M, Matatov-Meytal YI (1999) Catal Today 53:73

    Article  CAS  Google Scholar 

  25. San Miguel G, Lambert SD, Graham NJD (2001) Water Res 35:2740

    Article  PubMed  Google Scholar 

  26. Zhang H (2002) Chem Eng J 85:81

    Article  CAS  Google Scholar 

  27. Shter GC, Shindler Yu, Matatov-Meytal Yu, Grader GS, Sheintuch M (2002) Carbon 40:2547

    Article  CAS  Google Scholar 

  28. Crittenden JC, Suri RPS, Perram DL, Hand DW (1997) Water Res 31:411

    Article  CAS  Google Scholar 

  29. Skowroński JM, Krawczyk P (2000) Proc 51st Annual Meeting of International Society of Electrochemistry, Warszawa, Extended Abstracts, p 218

  30. Skowroński JM, Jurewicz K (1991) Synth Met 40:161

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported from the grant TB 31-048/03 DS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Skowroński.

Additional information

Dedicated to the memory of Harry B. Mark, Jr. (28 February 1934–3 March 2003)

Contribution to the 3rd Baltic Conference on Electrochemistry, Gdańsk-Sobieszewo, 23–26 April 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skowroński, J.M., Krawczyk, P. Electrooxidation of phenol at exfoliated graphite electrode in alkaline solution. J Solid State Electrochem 8, 442–447 (2004). https://doi.org/10.1007/s10008-003-0483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-003-0483-8

Keywords

Navigation