Skip to main content

Advertisement

Log in

A novel noise filtered and occlusion removal: navigational accuracy in augmented reality-based constructive jaw surgery

  • Original Article
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

Purpose

Augmented reality-based constructive jaw surgery has been facing various limitations such as noise in real-time images, the navigational error of implants and jaw, image overlay error, and occlusion handling which have limited the implementation of augmented reality (AR) in corrective jaw surgery. This research aimed to improve the navigational accuracy, through noise and occlusion removal, during positioning of an implant in relation to the jaw bone to be cut or drilled.

Method

The proposed system consists of a weighting-based de-noising filter and depth mapping-based occlusion removal for removing any occluded object such as surgical tools, the surgeon’s body parts, and blood.

Results

The maxillary (upper jaw) and mandibular (lower jaw) jaw bone sample results show that the proposed method can achieve the image overlay error (video accuracy) of 0.23~0.35 mm and processing time of 8–12 frames per second compared to 0.35~0.45 mm and 6–11 frames per second by the existing best system.

Conclusion

The proposed system concentrates on removing the noise from the real-time video frame and the occlusion. Thus, the acceptable range of accuracy and the processing time are provided by this study for surgeons for carrying out a smooth surgical flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang J, Suenaga H, Hoshi K, Yang L, Kobayashi E, Sakuma I, Liao H (2014) Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery. IEEE Trans Biomed Eng 61(4):1295–1304

    Article  PubMed  Google Scholar 

  2. Bruellmann D, Tjaden H, Schwanecke U, Barth P (2012) An optimized video system for augmented reality in endodontics: a feasibility study. Clin Oral Investig 17(2):441–448

    Article  PubMed  Google Scholar 

  3. Murugesan Y, Alsadoon A, Paul M, Prasad P (2018) A novel rotational matrix and translation vector (RMaTV) algorithms: geometric accuracy for augmented reality (AR) in oral and maxillofacial surgeries. Int J Med Rob Comput Assisted Surg 14:e1889. https://doi.org/10.1002/rcs.1889

    Article  Google Scholar 

  4. Suenaga H, Tran H, Liao H, Masamune K, Dohi T, Hoshi K, Takato T (2015) Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study. BMC Med Imaging 15(1):51. https://doi.org/10.1186/s12880-015-0089-5

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sielhorst T, Feuerstein M, Navab N (2008) Advanced medical displays: a literature review of augmented reality. J Disp Technol 4(4):451–467. https://doi.org/10.1109/jdt.2008.2001575

    Article  Google Scholar 

  6. Wang J, Suenaga H, Liao H, Hoshi K, Yang L, Kobayashi E, Sakuma I (2015) Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation. Comput Med Imaging Graph 40:147–159. https://doi.org/10.1016/j.compmedimag.2014.11.003

    Article  PubMed  Google Scholar 

  7. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422 https://doi.org/10.1109/tpami.2011.239

    Article  PubMed  Google Scholar 

  8. Choi H, Park Y, Lee S, Ha H, Kim S, Cho H, Hong J (2017) A portable surgical navigation device to display resection planes for bone tumor surgery. Minim Invasive Ther Allied Technol 26(3):144–150. https://doi.org/10.1080/13645706.2016.1274766

    Article  PubMed  Google Scholar 

  9. Wu J, Wang M, Liu K, Hu M, Lee P (2014) Real-time advanced spinal surgery via visible patient model and augmented reality system. Comput Methods Prog Biomed 113(3):869–881. https://doi.org/10.1016/j.cmpb.2013.12.021

    Article  Google Scholar 

  10. Nakao M, Endo S, Nakao S, Yoshida M, Matsuda T (2016) Augmented endoscopic images overlaying shape changes in bone cutting procedures. PLoS One 11(9):e0161815. https://doi.org/10.1371/journal.pone.0161815

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen X, Xu L, Wang Y, Wang H, Wang F, Zeng X, Wang Q, Egger J (2015) Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display. J Biomed Inform 55:124–131. https://doi.org/10.1016/j.jbi.2015.04.003

    Article  PubMed  Google Scholar 

  12. Hung K, Wang F, Wang H, Zhou W, Huang W, Wu Y (2017) Accuracy of a real-time surgical navigation system for the placement of quad zygomatic implants in the severe atrophic maxilla: a pilot clinical study. Clin Implant Dent Relat Res 19(3):458–465. https://doi.org/10.1111/cid.12475

    Article  PubMed  Google Scholar 

  13. Chen X, Xu L, Wang Y, Hao Y, Wang L (2016) Image-guided installation of 3D-printed patient-specific implant and its application in pelvic tumor resection and reconstruction surgery. Comput Methods Prog Biomed 125:66–78. https://doi.org/10.1016/j.cmpb.2015.10.020

    Article  Google Scholar 

  14. Fitzpatrick J, West J, Maurer C (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17(5):694–702. https://doi.org/10.1109/42.736021

    Article  CAS  PubMed  Google Scholar 

  15. Schicho K, Figl M, Seemann R, Donat M, Pretterklieber M, Birkfellner W et al (2007) Comparison of laser surface scanning and fiducial marker–based registration in frameless stereotaxy. J Neurosurg 106(4):704–709. https://doi.org/10.3171/jns.2007.106.4.704

    Article  PubMed  Google Scholar 

  16. Kilgus T, Heim E, Haase S, Prüfer S, Müller M, Seitel A, Fangerau M, Wiebe T, Iszatt J, Schlemmer HP, Hornegger J, Yen K, Maier-Hein L (2014) Mobile markerless augmented reality and its application in forensic medicine. Int J Comput Assist Radiol Surg 10(5):573–586. https://doi.org/10.1007/s11548-014-1106-9

    Article  PubMed  Google Scholar 

  17. Zinser M, Mischkowski R, Dreiseidler T, Thamm O, Rothamel D, Zöller J (2013) Computer-assisted orthognathic surgery: waferless maxillary positioning, versatility, and accuracy of an image-guided visualisation display. Br J Oral Maxillofac Surg 51(8):827–833. https://doi.org/10.1016/j.bjoms.2013.06.014

    Article  PubMed  Google Scholar 

  18. Wang J, Suenaga H, Yang L, Kobayashi E, Sakuma I (2016) Video see-through augmented reality for oral and maxillofacial surgery. Int J Med Rob Comput Assisted Surg 13(2):e1754 https://doi.org/10.1002/rcs.1754

    Article  Google Scholar 

  19. Gold S, Rangarajan A, Lu C, Pappu S, Mjolsness E (1998) New algorithms for 2D and 3D point matching. Pattern Recogn 31(8):1019–1031. https://doi.org/10.1016/s0031-3203(98)80010-1

    Article  Google Scholar 

  20. Ulrich M, Wiedemann C, Steger C (2012) Combining scale-space and similarity-based aspect graphs for fast 3D object recognition. IEEE Trans Pattern Anal Mach Intell 34(10):1902–1914. https://doi.org/10.1109/tpami.2011.266

    Article  PubMed  Google Scholar 

  21. Xiao J, Gerke M, Vosselman G (2012) Building extraction from oblique airborne imagery based on robust façade detection. ISPRS J Photogramm Remote Sens 68:65–68

    Article  Google Scholar 

  22. Kalal Z, Mikolajczyk K, Matas J (2010) Forward-backward error: automatic detection of tracking failures. In: 2010 20Th international conference on pattern recognition. https://doi.org/10.1109/icpr.2010.675

    Chapter  Google Scholar 

  23. Kazemi, M., Mohammadi, E., sadeghi, P., & Menhaj, M. (2017). A Non-local means approach for Gaussian noise removal from images using a modified weighting kernel. In Iranian Conference on Electr Eng Tehran: ICEE

  24. He C., Liu Y. and Wang Y. Sensor-fusion based augmented-reality surgical navigation system. 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7520404. Accessed 7 Jan 2018

Download references

Acknowledgements

This work was supported in part by Study Support Manager Angelika Maag from the Sydney Study Centre of Charles Sturt University, Sydney, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandana Withana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not Applicable.

Informed consent

Not Applicable.

Appendix

Appendix

Table 4 Abbreviations for the terms used in the paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basnet, B.R., Alsadoon, A., Withana, C. et al. A novel noise filtered and occlusion removal: navigational accuracy in augmented reality-based constructive jaw surgery. Oral Maxillofac Surg 22, 385–401 (2018). https://doi.org/10.1007/s10006-018-0719-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-018-0719-5

Keywords

Navigation