Skip to main content

Advertisement

Log in

Application of selected scaffolds for bone tissue engineering: a systematic review

  • Review Article
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

Purpose

The current systematic review investigated the results of application of some of the most commonly used scaffolds in conjugation with stem cells and growth factors in animal and clinical studies.

Methods

A comprehensive electronic search was conducted according to the PRISMA guidelines in NCBI PMC and PubMed from January 1970 to December 2015 limited to English language publications with available full texts. In vivo studies in relation to “bone healing,” “bone regeneration,” and at least one of the following items were investigated: allograft, β-tricalcium phosphate, deproteinized bovine bone mineral, hydroxyapetite/tricalcium phosphate, nanohydroxyapatite, and composite scaffolds.

Results

A total of 1252 articles were reviewed, and 46 articles completely fulfilled the inclusion criteria of this study. The highest bone regeneration has been achieved when combination of all three elements, given scaffolds, mesenchymal stem cells, and growth factors, were used. Among studies being reported in this review, bone marrow mesenchymal stem cells are the most studied mesenchymal stem cells, β-tricalcium phosphate is the most frequently used scaffold, and platelet-rich plasma is the most commonly used growth factor.

Conclusion

The current review aimed to inform reconstructive surgeons of how combinations of various mesenchymal stem cells, scaffolds, and growth factors enhance bone regeneration. The highest bone regeneration has been achieved when combination of all three elements, given scaffolds, mesenchymal stem cells, and growth factors, were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Behnia H, Khojasteh A, Esmaeelinejad M, Naghdi N (2012) Growth factor carriers in bone formation: a systematic review. Journal of Islamic Dental Association of Iran 24:150–167

    Google Scholar 

  2. Hassani A, Khojasteh A, Alikhasi M (2008) Anterior palate of the maxilla as a donor site for oral and maxillofacial reconstructive procedures. Asian Journal of Oral and Maxillofacial Surgery 20:135–138

    Article  Google Scholar 

  3. Hassani A, Khojasteh A, Alikhasi M, Vaziri H (2009) Measurement of volume changes of sinus floor augmentation covered with buccal fat pad: a case series study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 107:369–374

    Article  PubMed  Google Scholar 

  4. Hassani A, Khojasteh A, Shamsabad AN (2005) The anterior palate as a donor site in maxillofacial bone grafting: a quantitative anatomic study. J Oral Maxillofac Surg 63:1196–1200

    Article  PubMed  Google Scholar 

  5. Khojasteh A, Behnia H, Dashti SG, Stevens M (2012) Current trends in mesenchymal stem cell application in bone augmentation: a review of the literature. J Oral Maxillofac Surg 70:972–982

    Article  PubMed  Google Scholar 

  6. Khojasteh A, Behnia H, Shayesteh YS, Morad G, Alikhasi M (2011) Localized bone augmentation with cortical bone blocks tented over different particulate bone substitutes: a retrospective study. Int J Oral Maxillofac Implants 27:1481–1493

    Google Scholar 

  7. Morad G, Kheiri L, Khojasteh A (2013) Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature. Arch Oral Biol 58:1818–1827

    Article  CAS  PubMed  Google Scholar 

  8. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Critical Reviews™ in. Biomed Eng 40

  9. Behnia H, Khojasteh A, Kiani MT, Khoshzaban A, Abbas FM, Bashtar M et al (2013) Bone regeneration with a combination of nanocrystalline hydroxyapatite silica gel, platelet-rich growth factor, and mesenchymal stem cells: a histologic study in rabbit calvaria. Oral surgery, oral medicine, oral pathology and oral radiology 115:e7–e15

    Article  PubMed  Google Scholar 

  10. Khojasteh A, Soheilifar S, Mohajerani H, Nowzari H (2012) The effectiveness of barrier membranes on bone regeneration in localized bony defects: a systematic review. Int J Oral Maxillofac Implants 28:1076–1089

    Article  Google Scholar 

  11. Mortazavi SH, Khojasteh A, Vaziri H, Khoshzaban A, Roudsari MV, Razavi SHE (2009) The effect of fluoxetine on bone regeneration in rat calvarial bone defects. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 108:22–27

    Article  PubMed  Google Scholar 

  12. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells 25:2896–2902

    Article  PubMed  Google Scholar 

  13. Motamedian FSTSR, Khosraviani FGK, Khojasteh A (2012) Craniomaxillofacial bone engineering by scaffolds loaded with stem cells: a systematic review. J Dent Sch 116

  14. Huang G-J, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88:792–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Z (2011) Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Frontiers of medicine 5:401–413

    Article  CAS  PubMed  Google Scholar 

  16. Behnia H, Khojasteh A, Soleimani M, Tehranchi A, Khoshzaban A, Keshel SH et al (2009) Secondary repair of alveolar clefts using human mesenchymal stem cells. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 108:e1–e6

    Article  PubMed  Google Scholar 

  17. Jafarian M, Eslaminejad MB, Khojasteh A, Abbas FM, Dehghan MM, Hassanizadeh R et al (2008) Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 105:e14–e24

    Article  PubMed  Google Scholar 

  18. Khojasteh A, Eslaminejad MB, Nazarian H (2008) Mesenchymal stem cells enhance bone regeneration in rat calvarial critical size defects more than platelete-rich plasma. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 106:356–362

    Article  PubMed  Google Scholar 

  19. Shayesteh YS, Khojasteh A, Soleimani M, Alikhasi M, Khoshzaban A, Ahmadbeigi N (2008) Sinus augmentation using human mesenchymal stem cells loaded into a β-tricalcium phosphate/hydroxyapatite scaffold. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 106:203–209

    Article  PubMed  Google Scholar 

  20. Behnia H, Khojasteh A, Soleimani M, Tehranchi A, Atashi A (2012) Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: a preliminary report. J Cranio-Maxillofac Surg 40:2–7

    Article  Google Scholar 

  21. Houshmand B, Behnia H, Khoshzaban A, Morad G, Behrouzi G, Dashti SG et al (2012) Osteoblastic differentiation of human stem cells derived from bone marrow and periodontal ligament under the effect of enamel matrix derivative and transforming growth factor-beta. Int J Oral Maxillofac Implants 28:e440–e450

    Article  Google Scholar 

  22. Takahashi Y, Yamamoto M, Tabata Y (2005) Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials 26:3587–3596

    Article  CAS  PubMed  Google Scholar 

  23. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM (1991) Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 7:302–310

    Google Scholar 

  24. Eggli P, Moller W, Schenk R (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits: a comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res 232:127–138

    CAS  Google Scholar 

  25. Matsuda T, Davies J (1987) The in vitro response of osteoblasts to bioactive glass. Biomaterials 8:275–284

    Article  CAS  PubMed  Google Scholar 

  26. Eslaminejad MB, Jafarian M, Khojasteh A, Mashhadi Abbas F, Dehghan MM, Houshmand B (2007) Enhancing ectopic bone formation in canine masseter muscle by loading mesenchymal stem cells onto natural bovine bone minerals. Iranian J Vet Surg 2:25–35

    Google Scholar 

  27. Hao W, Pang L, Jiang M, Lv R, Xiong Z, Hu YY (2010) Skeletal repair in rabbits using a novel biomimetic composite based on adipose-derived stem cells encapsulated in collagen I gel with PLGA-β-TCP scaffold. J Orthop Res 28:252–257

    CAS  PubMed  Google Scholar 

  28. Khojasteh A, Eslaminejad MB, Nazarian H, Morad G, Dashti SG, Behnia H et al (2013) Vertical bone augmentation with simultaneous implant placement using particulate mineralized bone and mesenchymal stem cells: a preliminary study in rabbit. Journal of Oral Implantology 39:3–13

    Article  PubMed  Google Scholar 

  29. Liu G, Sun J, Li Y, Zhou H, Cui L, Liu W et al (2008) Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study. Calcif Tissue Int 83:176–185

    Article  CAS  PubMed  Google Scholar 

  30. Neamat A, Gawish A, Gamal-Eldeen AM (2009) β-Tricalcium phosphate promotes cell proliferation, osteogenesis and bone regeneration in intrabony defects in dogs. Arch Oral Biol 54:1083–1090

    Article  CAS  PubMed  Google Scholar 

  31. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269

    Article  PubMed  Google Scholar 

  32. Nather A, David V, Teng JW, Lee CW, Pereira BP (2010) Effect of autologous mesenchymal stem cells on biological healing of allografts in critical-sized tibial defects simulated in adult rabbits. Ann Acad Med Singap 39:599

    PubMed  Google Scholar 

  33. Lee J-Y, Choi M-H, Shin E-Y, Kang Y-K (2011) Autologous mesenchymal stem cells loaded in Gelfoam® for structural bone allograft healing in rabbits. Cell Tissue Bank 12:299–309

    Article  CAS  PubMed  Google Scholar 

  34. Lucarelli E, Fini M, Beccheroni A, Giavaresi G, Di Bella C, Aldini NN et al (2005) Stromal stem cells and platelet-rich plasma improve bone allograft integration. Clin Orthop Relat Res 435:62–68

    Article  Google Scholar 

  35. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects*. The Journal of Bone & Joint Surgery 80:985–996

    Article  CAS  Google Scholar 

  36. Taira H, Moreno J, Ripalda P, Forriol F (2004) Radiological and histological analysis of cortical allografts: an experimental study in sheep femora. Arch Orthop Trauma Surg 124:320–325

    Article  PubMed  Google Scholar 

  37. Rickert D, Sauerbier S, Nagursky H, Menne D, Vissink A, Raghoebar G (2011) Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: a prospective randomized clinical trial. Clin Oral Implants Res 22:251–258

    Article  CAS  PubMed  Google Scholar 

  38. Raposo-Amaral CE, Bueno DF, Almeida AB, Jorgetti V, Costa CC, Gouveia CH et al (2014) Is bone transplantation the gold standard for repair of alveolar bone defects? Journal of tissue engineering 5:2041731413519352

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yu B-H, Zhou Q, Wang Z-L (2014) Periodontal ligament versus bone marrow mesenchymal stem cells in combination with Bio-Oss scaffolds for ectopic and in situ bone formation: a comparative study in the rat. J Biomater Appl 29:243–253

    Article  CAS  PubMed  Google Scholar 

  40. Khorsand A, Eslaminejad MB, Arabsolghar M, Paknejad M, Ghaedi B, Rokn AR et al (2013) Autologous dental pulp stem cells in regeneration of defect created in canine periodontal tissue. Journal of oral implantology 39:433–443

    Article  PubMed  Google Scholar 

  41. Park J-C, Oh S-Y, Lee J-S, Park S-Y, Choi E-Y, Cho K-S, Kim C-S (2016) In vivo bone formation by humanalveolar-bone-derived mesenchymal stem cells obtained during implant osteotomy using biphasic calcium phosphate ceramics or Bio-Oss as carriers. J Biomed Mater Res Part B 104B:515–524

  42. Yu B-H, Zhou Q, Wang Z-L (2014) Comparison of tissue-engineered bone from different stem cell sources for maxillary sinus floor augmentation: a study in a canine model. J Oral Maxillofac Surg 72:1084–1092

    Article  PubMed  Google Scholar 

  43. Feng W, Lv S, Cui J, Han X, Du J, Sun J et al (2015) Histochemical examination of adipose derived stem cells combined with β-TCP for bone defects restoration under systemic administration of 1α, 25 (OH) 2 D 3. Mater Sci Eng C 54:133–141

    Article  CAS  Google Scholar 

  44. Ueda M, Yamada Y, Ozawa R, Okazaki Y (2005) Clinical case reports of injectable tissue-engineered bone for alveolar augmentation with simultaneous implant placement. J Prosthet Dent 94:560

    Article  Google Scholar 

  45. Thesleff T, Lehtimäki K, Niskakangas T, Mannerström B, Miettinen S, Suuronen R et al (2011) Cranioplasty with adipose-derived stem cells and biomaterial: a novel method for cranial reconstruction. Neurosurgery 68:1535–1540

    Article  PubMed  Google Scholar 

  46. Zhou J, Lin H, Fang T, Li X, Dai W, Uemura T et al (2010) The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone. Biomaterials 31:1171–1179

    Article  CAS  PubMed  Google Scholar 

  47. Wang J, Qiao P, Dong L, Li F, Xu T, Xie Q (2013) Microencapsulated rBMMSCs/calcium phosphate cement for bone formation in vivo. Biomed Mater Eng 24:835–843

    Google Scholar 

  48. Damlar I, Erdoğan Ö, Tatli U, Arpağ OF, Görmez U, Üstün Y (2015) Comparison of osteoconductive properties of three different β-tricalcium phosphate graft materials: a pilot histomorphometric study in a pig model. J Cranio-Maxillofac Surg 43:175–180

    Article  Google Scholar 

  49. Li H, Dai K, Tang T, Zhang X, Yan M, Lou J (2007) Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2. Biochem Biophys Res Commun 356:836–842

    Article  CAS  PubMed  Google Scholar 

  50. Guan J, Zhang J, Li H, Zhu Z, Guo S, Niu X et al. (2015) Human urine derived stem cells in combination with β-TCP can be applied for bone regeneration

  51. Eftekhari H, Farahpour M, Rabiee S (2014) Histopathological evaluation of potential impact of β-tricalcium phosphate (HA+ β-TCP) granules on healing of segmental femur bone defect. Bratislavske lekarske listy 116:30–34

    Google Scholar 

  52. Sun W, Li Z-R, Yang Y-R, Shi Z-C, Wang B, Liu B et al (2011) Experimental study on phase-contrast imaging with synchrotron hard X-ray for repairing osteonecrosis of the femoral head. Orthopedics 34:699

    Google Scholar 

  53. Liu H-C, Wang D-S, Su F, Wu X, Shi Z-P, Lv Y et al (2011) Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly (L-lactide). Tissue Eng A 17:2417–2433

    Article  CAS  Google Scholar 

  54. Liu X, Li X, Fan Y, Zhang G, Li D, Dong W et al (2010) Repairing goat tibia segmental bone defect using scaffold cultured with mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 94:44–52

    PubMed  Google Scholar 

  55. Ling LE, Feng L, Liu HC, Wang DS, Shi ZP, Wang JC et al (2015) The effect of calcium phosphate composite scaffolds on the osteogenic differentiation of rabbit dental pulp stem cells. J Biomed Mater Res A 103:1732–1745

    Article  PubMed  Google Scholar 

  56. Vahabi S, Amirizadeh N, Shokrgozar M, Mofeed R, Mashhadi A, Aghaloo M et al (2011) A comparison between the efficacy of Bio-Oss, hydroxyapatite tricalcium phosphate and combination of mesenchymal stem cells in inducing bone regeneration. Chang Gung Med J 35:28–37

    Google Scholar 

  57. Kim S-H, Kim K-H, Seo B-M, Koo K-T, Kim T-I, Seol Y-J et al (2009) Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: a pilot study. J Periodontol 80:1815–1823

    Article  PubMed  Google Scholar 

  58. Arinzeh TL, Peter SJ, Archambault MP, Van Den Bos C, Gordon S, Kraus K et al (2003) Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. The Journal of Bone & Joint Surgery 85:1927–1935

    Article  Google Scholar 

  59. He F, Chen Y, Li J, Lin B, Ouyang Y, Yu B et al (2015) Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure. J Biomed Mater Res A 103:1312–1324

    Article  PubMed  Google Scholar 

  60. Liao H-T, Chen Y-Y, Lai Y-T, Hsieh M-F, Jiang C-P (2014) The osteogenesis of bone marrow stem cells on mPEG-PCL-mPEG/hydroxyapatite composite scaffold via solid freeform fabrication. Biomed Res Int 2014

  61. Pang L, Hao W, Jiang M, Huang J, Yan Y, Hu Y (2013) Bony defect repair in rabbit using hybrid rapid prototyping polylactic-co-glycolic acid/β-tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells. Indian journal of orthopaedics 47:388

    Article  PubMed  PubMed Central  Google Scholar 

  62. James AW, Levi B, Nelson ER, Peng M, Commons GW, Lee M et al (2010) Deleterious effects of freezing on osteogenic differentiation of human adipose-derived stromal cells in vitro and in vivo. Stem Cells Dev 20:427–439

    Article  PubMed  PubMed Central  Google Scholar 

  63. Rai B, Lin JL, Lim ZX, Guldberg RE, Hutmacher DW, Cool SM (2010) Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL–TCP scaffolds. Biomaterials 31:7960–7970

    Article  CAS  PubMed  Google Scholar 

  64. Konopnicki S, Sharaf B, Resnick C, Patenaude A, Pogal-Sussman T, Hwang K-G et al (2015) Tissue-engineered bone with 3-dimensionally printed β-tricalcium phosphate and polycaprolactone scaffolds and early implantation: an in vivo pilot study in a porcine mandible model. J Oral Maxillofac Surg 73:1016. e1011–1016. e1011

    Google Scholar 

  65. Prosecká E, Rampichová M, Litvinec A, Tonar Z, Králíčková M, Vojtová L et al (2015) Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J Biomed Mater Res A 103:671–682

    Article  PubMed  Google Scholar 

  66. Kim S-J, Kim M-R, Oh J-S, Han I, Shin S-W (2009) Effects of polycaprolactone-tricalcium phosphate, recombinant human bone morphogenetic protein-2 and dog mesenchymal stem cells on bone formation: pilot study in dogs. Yonsei Med J 50:825–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  68. Rad MR, Liu D, He H, Brooks H, Xiao M, Wise GE et al (2015) The role of dentin matrix protein 1 (DMP1) in regulation of osteogenic differentiation of rat dental follicle stem cells (DFSCs). Arch Oral Biol 60:546–556

    Article  PubMed Central  Google Scholar 

  69. Guo MZ, Xia ZS, Lin LB (1991) The mechanical and biological properties of demineralised cortical bone allografts in animals. Journal of Bone & Joint Surgery, British Volume 73:791–794

    Article  CAS  Google Scholar 

  70. Urist MR, Mikulski A, Lietze A (1979) Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci 76:1828–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Enneking WF, Campanacci DA (2001) Retrieved human allografts. The Journal of Bone & Joint Surgery 83:971–986

    Article  Google Scholar 

  72. Enneking W, Mindell E (1991) Observations on massive retrieved human allografts. The Journal of Bone & Joint Surgery 73:1123–1142

    Article  CAS  Google Scholar 

  73. Jensen SS, Broggini N, Hjørting-Hansen E, Schenk R, Buser D (2006) Bone healing and graft resorption of autograft, anorganic bovine bone and β-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 17:237–243

    Article  PubMed  Google Scholar 

  74. Suzuki O, Imaizumi H, Kamakura S, Katagiri T (2008) Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization. Curr Med Chem 15:305–313

    Article  CAS  PubMed  Google Scholar 

  75. Liao S, Cui F, Zhang W, Feng Q (2004) Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res B Appl Biomater 69:158–165

    Article  CAS  PubMed  Google Scholar 

  76. Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Expert review of medical devices 4:405–418

    Article  CAS  PubMed  Google Scholar 

  77. Coombes A, Rizzi S, Williamson M, Barralet J, Downes S, Wallace W (2004) Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials 25:315–325

    Article  CAS  PubMed  Google Scholar 

  78. Shikinami Y, Okazaki K, Saito M, Okuno M, Hasegawa S, Tamura J et al (2006) Bioactive and bioresorbable cellular cubic-composite scaffolds for use in bone reconstruction. J R Soc Interface 3:805–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mondrinos MJ, Dembzynski R, Lu L, Byrapogu VK, Wootton DM, Lelkes PI et al (2006) Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408

    Article  CAS  PubMed  Google Scholar 

  80. Zhou Y, Hutmacher DW, Varawan SL, Lim TM (2007) In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium phosphate composites. Polym Int 56:333–342

    Article  CAS  Google Scholar 

  81. Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC (2016) Osteogenesis of adipose-derived stem cells on polycaprolactone–β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. J Tissue Eng Regen Med 10(10):E337–E353

  82. Azevedo M, Reis R, Claase M, Grijpma D, Feijen J (2003) Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. J Mater Sci Mater Med 14:103–107

    Article  CAS  PubMed  Google Scholar 

  83. Farré-Guasch E, Martí-Pagès C, Hernández-Alfaro F, Klein-Nulend J, Casals N (2010) Buccal fat pad, an oral access source of human adipose stem cells with potential for osteochondral tissue engineering: an in vitro study. Tissue Engineering Part C: Methods 16:1083–1094

    Article  Google Scholar 

  84. Huard J, Cao B, Qu-Petersen Z (2003) Muscle-derived stem cells: potential for muscle regeneration. Birth Defects Research Part C: Embryo Today: Reviews 69:230–237

    Article  CAS  Google Scholar 

  85. Chaudhry G, Yao D, Smith A, Hussain A (2004) Osteogenic cells derived from embryonic stem cells produced bone nodules in three-dimensional scaffolds. Biomed Res Int 2004:203–210

    CAS  Google Scholar 

  86. Lin NH, Gronthos S, Mark Bartold P (2009) Stem cells and future periodontal regeneration. Periodontol 51:239–251

    Article  Google Scholar 

  87. McKay WF, Peckham SM, Badura JM (2007) A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE® Bone Graft). Int Orthop 31:729–734

    Article  PubMed  PubMed Central  Google Scholar 

  88. Weibrich G, Kleis WK, Hafner G, Hitzler WE (2002) Growth factor levels in platelet-rich plasma and correlations with donor age, sex, and platelet count. J Cranio-Maxillofac Surg 30:97–102

    Article  Google Scholar 

  89. Marx RE (2004) Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg 62:489–496

    Article  PubMed  Google Scholar 

  90. Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T (2005) Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation. J Oral Maxillofac Surg 63:362–369

    Article  PubMed  Google Scholar 

  91. Hollinger JO, Hart CE, Hirsch SN, Lynch S, Friedlaender GE (2008) Recombinant human platelet-derived growth factor: biology and clinical applications. The Journal of Bone & Joint Surgery 90:48–54

    Article  Google Scholar 

  92. Tare R, Kanczler J, Aarvold A, Jones A, Dunlop D, Oreffo R (2010) Skeletal stem cells and bone regeneration: translational strategies from bench to clinic. Proc Inst Mech Eng H J Eng Med 224:1455–1470

    Article  CAS  Google Scholar 

  93. Schimandle JH, Boden SD (1994) The use of animal models to study spinal fusion. Spine-Hagerstown 19:1988–1991

    Google Scholar 

  94. Liebschner MA (2004) Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 25:1697–1714

    Article  CAS  PubMed  Google Scholar 

  95. Hazzard DG, Bronson RT, McClearn GE, Strong R (1992) Selection of an appropriate animal model to study aging processes with special emphasis on the use of rat strains. J Gerontol 47:B63–B64

    Article  CAS  PubMed  Google Scholar 

  96. Egermann M, Goldhahn J, Schneider E (2005) Animal models for fracture treatment in osteoporosis. Osteoporos Int 16:S129–S138

    Article  PubMed  Google Scholar 

  97. Pearce A, Richards R, Milz S, Schneider E, Pearce S (2007) Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 13:1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Khojasteh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinpour, S., Ghazizadeh Ahsaie, M., Rezai Rad, M. et al. Application of selected scaffolds for bone tissue engineering: a systematic review. Oral Maxillofac Surg 21, 109–129 (2017). https://doi.org/10.1007/s10006-017-0608-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-017-0608-3

Keywords

Navigation