Skip to main content

Advertisement

Log in

Implants in bone: Part II. Research on implant osseointegration

Material testing, mechanical testing, imaging and histoanalytical methods

  • Review Article
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

Purpose

In order to determine whether a newly developed implant material conforms to the requirements of biocompatibility, it must undergo rigorous testing. To correctly interpret the results of studies on implant material osseointegration, it is necessary to have a sound understanding of all the testing methods. The aim of this overview is to elucidate the methods that are used for the experimental evaluation of the osseointegration of implant materials.

Discussion

In recent decades, there has been a constant proliferation of new materials and surface modifications in the field of dental implants. This continuous development of innovative biomaterials requires a precise and detailed evaluation in terms of biocompatibility and implant healing before clinical use. The current gold standard is in vivo animal testing on well validated animal models. However, long-term outcome studies on patients have to follow to finally validate and show patient benefit.

Conclusion

No experimental set-up can provide answers for all possible research questions. However, a certain transferability of the results to humans might be possible if the experimental set-up is carefully chosen for the aspects and questions being investigated. To enhance the implant survival rate in the rising number of patients with chronic diseases which compromise wound healing and osseointegration, dental implant research on compromised animal models will further gain importance in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kammula R, Morris J (2001) Considerations for the biocompatibility evaluation of medical devices. Med Device Diagn Ind. http://www.mddionline.com

  2. DFG DF (1984) Der Tierversuch als wissenschaftliche Methode. In: Tierexperimentelle Forschung und Tierschutz. Mitteilung III der Kommission für Versuchstierforschung. VCH Verlagsgesellschaft mbH, Weinheim, pp 17–22

    Google Scholar 

  3. Zutphen LV, Baumans V, Beynen A (1995) Grundlagen der Versuchstierkunde. Verlag GF, Stuttgart

    Google Scholar 

  4. Held J (1983) Appropriate animal models. The role of animals in biomedical research. Ann N Y Acad Sci 406:13–19

    CAS  PubMed  Google Scholar 

  5. Grünberg W (1992) Der Tierversuch als Methode der biomedizinischen Forschung. In: Kronberger L (ed) Experimentelle Chirurgie. Ferdinand Enke Verlag, Stuttgart, pp 18–24

    Google Scholar 

  6. Nunamaker DM (1998 Oct) Experimental models of fracture repair. Clin Orthop Relat Res (355 Suppl):S56–65

  7. Bosetti M, Zanardi L, Hench L, Cannas M (2003) Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. J Biomed Mater Res A 64(1):189–195

    PubMed  Google Scholar 

  8. Metak G, Gomoll A, Wolter W, Barth G, Ascherl R (1998) Interspecies comparison of healing standardazed bone defects with and without autogenous bone transplantation. Langenbecks Arch Chir Suppl Kongressbd 115(Suppl I):25–30

    CAS  PubMed  Google Scholar 

  9. Nkenke E, Hahn M, Weinzierl K, Radespiel-Troger M, Neukam FW, Engelke K (2003) Implant stability and histomorphometry: a correlation study in human cadavers using stepped cylinder implants. Clin Oral Implants Res 14(5):601–609

    PubMed  Google Scholar 

  10. Nkenke E, Kloss F, Wiltfang J, Schultze-Mosgau S, Radespiel-Troger M, Loos K et al (2002) Histomorphometric and fluorescence microscopic analysis of bone remodelling after installation of implants using an osteotome technique. Clin Oral Implants Res 13(6):595–602

    PubMed  Google Scholar 

  11. Rupprecht S, Bloch-Birkholz A, Lethaus B, Rosiwal S, Neukam FW, Schlegel A (2005) The bone–metal interface of defect and press-fit ingrowth of microwave plasma-chemical vapor deposition implants in the rabbit model. Clin Oral Implants Res 16(1):98–104

    PubMed  Google Scholar 

  12. Administration UFaD (2005) 510(k) premarket notification #K041177 for SYNTHACER and SYNTRICER according to regulation number 888.3045. Administration UFaD, Rockville

    Google Scholar 

  13. Gilsanz V, Roe TF, Gibbens DT, Schulz EE, Carlson ME, Gonzalez O et al (1988) Effect of sex steroids on peak bone density of growing rabbits. Am J Physiol 255(4 Pt 1):E416–E421

    CAS  PubMed  Google Scholar 

  14. Wang X, Mabrey JD, Agrawal CM (1998) An interspecies comparison of bone fracture properties. Biomed Mater Eng 8(1):1–9

    CAS  PubMed  Google Scholar 

  15. Sturmer KM, Schuchardt W (1980) New aspects of closed intramedullary nailing and marrow cavity reaming in animal experiments: I. The tibia of the sheep, as a model for intramedullar nailing (author's transl). Unfallheilkunde 83(7):341–345

    CAS  PubMed  Google Scholar 

  16. Vignoletti F, Abrahamsson I (2012) Quality of reporting of experimental research in implant dentistry. Critical aspects in design, outcome assessment and model validation. J Clin Periodontol 39(Suppl 12):6–27

    PubMed  Google Scholar 

  17. Marshall M, Oberhofer H, Staubesand J (1980) Early micro- and macro-angiopathy in the streptozotocin diabetic minipig. Res Exp Med (Berl) 177(2):145–158

    CAS  Google Scholar 

  18. Laiblin C, Jaeschke G (1979) Clinical chemistry examinations of bone and muscle metabolism under stress in the Gottingen miniature pig—an experimental study. Berl Munch Tierarztl Wochenschr 92(6):124–128

    CAS  PubMed  Google Scholar 

  19. Beddoe AH (1978) A quantitative study of the structure of trabecular bone in man, rhesus monkey, beagle and miniature pig. Calcif Tissue Res 25(3):273–281

    CAS  PubMed  Google Scholar 

  20. Swindle MM, Smith AC, Hepburn BJ (1988) Swine as models in experimental surgery. J Invest Surg 1(1):65–79

    CAS  PubMed  Google Scholar 

  21. Eitel F, Klapp F, Jacobson W, Schweiberer L (1981) Bone regeneration in animals and in man. A contribution to understanding the relative value of animal experiments to human pathophysiology. Arch Orthop Trauma Surg 99(1):59–64

    CAS  PubMed  Google Scholar 

  22. Schlegel KA, Lang FJ, Donath K, Kulow JT, Wiltfang J (2006) The monocortical critical size bone defect as an alternative experimental model in testing bone substitute materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102(1):7–13

    PubMed  Google Scholar 

  23. Aerssens J, Boonen S, Lowet G, Dequeker J (1998) Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 139(2):663–670

    CAS  PubMed  Google Scholar 

  24. Park J, Lutz R, Felszeghy E, Wiltfang J, Nkenke E, Neukam FW et al (2007) The effect on bone regeneration of a liposomal vector to deliver BMP-2 gene to bone grafts in peri-implant bone defects. Biomaterials 28(17):2772–2782

    CAS  PubMed  Google Scholar 

  25. Lutz R, Srour S, Nonhoff J, Weisel T, Damien CJ, Schlegel KA (2010) Biofunctionalization of titanium implants with a biomimetic active peptide (P-15) promotes early osseointegration. Clin Oral Implants Res 21(7):726–734

    CAS  PubMed  Google Scholar 

  26. Schlegel KA, Thorwarth M, Plesinac A, Wiltfang J, Rupprecht S (2006) Expression of bone matrix proteins during the osseus healing of topical conditioned implants: an experimental study. Clin Oral Implants Res 17(6):666–672

    PubMed  Google Scholar 

  27. Wehrhan F, Amann K, Molenberg A, Lutz R, Neukam FW, Schlegel KA (2012) PEG matrix enables cell-mediated local BMP-2 gene delivery and increased bone formation in a porcine critical size defect model of craniofacial bone regeneration. Clin Oral Implants Res 23(7):805–813

    PubMed  Google Scholar 

  28. Schlegel KA, Rupprecht S, Petrovic L, Honert C, Srour S, von Wilmowsky C et al (2009) Preclinical animal model for de novo bone formation in human maxillary sinus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108(3):e37–e44

    PubMed  Google Scholar 

  29. Phol Y, Joos G, at al (1995) Der Hund als Modell für die zahnärztliche Implantologie. Acta Chir. Austriaca Supplement 117

  30. Gong J, Arnold J, Cohn S (1964) Composition of trabecular and cortical bone. Anat Rec 149:325–332

    CAS  PubMed  Google Scholar 

  31. Kimmel DB, Jee WS (1982) A quantitative histologic study of bone turnover in young adult beagles. Anat Rec 203(1):31–45

    CAS  PubMed  Google Scholar 

  32. Finlay JB, Hurtig MB, Hardie WR, Liggins AB, Batte SW (1995) Geometrical properties of the ovine tibia: a suitable animal model to study the pin–bone interface in fracture fixation? Proc Inst Mech Eng H 209(1):37–50

    CAS  PubMed  Google Scholar 

  33. deKleer V (2006) Development of bone. In: Sumner-Smith G (ed) Bone in clinical orthopaedics. Saunders Co, Philadelphia, pp 1–80

    Google Scholar 

  34. Nafei A, Kabel J, Odgaard A, Linde F, Hvid I (2000) Properties of growing trabecular ovine bone: Part II. Architectural and mechanical properties. J Bone Joint Surg Br 82(6):921–927

    CAS  PubMed  Google Scholar 

  35. Liebschner MA (2004) Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials 25(9):1697–1714

    CAS  PubMed  Google Scholar 

  36. Turner AS (2001) Animal models of osteoporosis—necessity and limitations. Eur Cell Mater 1:66–81

    CAS  PubMed  Google Scholar 

  37. Nafei A, Danielsen CC, Linde F, Hvid I (2000) Properties of growing trabecular ovine bone: Part I. Mechanical and physical properties. J Bone Joint Surg Br 82(6):910–920

    CAS  PubMed  Google Scholar 

  38. Knauf M, Gerds T, Muche R, Strub JR (2007) Survival and success rates of 3i implants in partially edentulous patients: results of a prospective study with up to 84-months' follow-up. Quintessence Int 38(8):643–651

    PubMed  Google Scholar 

  39. Newman J, Pydisetty RV, Ackroyd C (2009) Unicompartmental or total knee replacement: the 15-year results of a prospective randomised controlled trial. J Bone Joint Surg Br 91(1):52–57

    CAS  PubMed  Google Scholar 

  40. Baumann B, Hendrich C, Barthel T, Bockholt M, Walther M, Eulert J et al (2007) 9- to 11-year results of cemented titanium mueller straight stem in total hip arthroplasty. Orthopedics 30(7):551–557

    PubMed  Google Scholar 

  41. Beikler T, Flemmig TF (2003) Implants in the medically compromised patient. Crit Rev Oral Biol Med 14(4):305–316

    PubMed  Google Scholar 

  42. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053

    PubMed  Google Scholar 

  43. Mellado-Valero A, Ferrer Garcia JC, Herrera Ballester A, Labaig Rueda C (2007) Effects of diabetes on the osseointegration of dental implants. Med Oral Patol Oral Cir Bucal 12(1):E38–E43

    PubMed  Google Scholar 

  44. Phalen RF, Mannix RC, Drew RT (1984) Inhalation exposure methodology. Environ Health Perspect 56:23–34

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Marshall M (1979) Induction of chronic diabetes by streptozotocin in the miniature pig. Res Exp Med (Berl) 175(2):187–196

    CAS  Google Scholar 

  46. Muggenburg BA, Tilley L, Green FH (2000) Animal models of cardiac disease: potential usefulness for studying health effects of inhaled particles. Inhal Toxicol 12(9):901–925

    CAS  PubMed  Google Scholar 

  47. von Wilmowsky C, Stockmann P, Metzler P, Harsch IA, Amann K, Schlegel KA (2010) Establishment of a streptozotocin-induced diabetic domestic pig model and a systematic evaluation of pathological changes in the hard and soft tissue over a 12-month period. Clin Oral Implants Res 21(7):709–717

    Google Scholar 

  48. Schlegel KA, Prechtl C, Most T, Seidl C, Lutz R, von Wilmowsky C (2011 Nov 24) Osseointegration of SLActive implants in diabetic pigs. Clin Oral Implants Res

  49. von Wilmowsky C, Stockmann P, Harsch I, Amann K, Metzler P, Lutz R et al (2011) Diabetes mellitus negatively affects peri-implant bone formation in the diabetic domestic pig. J Clin Periodontol 38(8):771–779

    Google Scholar 

  50. Barlet JP, Coxam V, Davicco MJ, Gaumet N (1994) Animal models of post-menopausal osteoporosis. Reprod Nutr Dev 34(3):221–236

    CAS  PubMed  Google Scholar 

  51. Zarrinkalam MR, Beard H, Schultz CG, Moore RJ (2009) Validation of the sheep as a large animal model for the study of vertebral osteoporosis. Eur Spine J 18(2):244–253

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Zarrinkalam MR, Mulaibrahimovic A, Atkins GJ, Moore RJ (2011 May 31) Changes in osteocyte density correspond with changes in osteoblast and osteoclast activity in an osteoporotic sheep model. Osteoporos Int

  53. Egermann M, Goldhahn J, Holz R, Schneider E, Lill CA (2008) A sheep model for fracture treatment in osteoporosis: benefits of the model versus animal welfare. Lab Anim 42(4):453–464

    CAS  PubMed  Google Scholar 

  54. Goldhahn J, Jenet A, Schneider E, Lill CA (2005) Slow rebound of cancellous bone after mainly steroid-induced osteoporosis in ovariectomized sheep. J Orthop Trauma 19(1):23–28

    PubMed  Google Scholar 

  55. Lill CA, Gerlach UV, Eckhardt C, Goldhahn J, Schneider E (2002) Bone changes due to glucocorticoid application in an ovariectomized animal model for fracture treatment in osteoporosis. Osteoporos Int 13(5):407–414

    CAS  PubMed  Google Scholar 

  56. Ding M, Danielsen CC, Overgaard S (2011 Jul 13) The effects of glucocorticoid on microarchitecture, collagen, mineral and mechanical properties of sheep femur cortical bone. J Tissue Eng Regen Med

  57. Fini M, Giardino R, Borsari V, Torricelli P, Rimondini L, Giavaresi G et al (2003) In vitro behaviour of osteoblasts cultured on orthopaedic biomaterials with different surface roughness, uncoated and fluorohydroxyapatite-coated, relative to the in vivo osteointegration rate. Int J Artif Organs 26(6):520–528

    CAS  PubMed  Google Scholar 

  58. Guchelaar HJ, Vermes A, Meerwaldt JH (1997) Radiation-induced xerostomia: pathophysiology, clinical course and supportive treatment. Support Care Cancer 5(4):281–288

    CAS  PubMed  Google Scholar 

  59. Ihde S, Kopp S, Gundlach K, Konstantinovic VS (2009) Effects of radiation therapy on craniofacial and dental implants: a review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 107(1):56–65

    PubMed  Google Scholar 

  60. Brogniez V, Nyssen-Behets C, Gregoire V, Reychler H, Lengele B (2002) Implant osseointegration in the irradiated mandible. A comparative study in dogs with a microradiographic and histologic assessment. Clin Oral Implants Res 13(3):234–242

    PubMed  Google Scholar 

  61. Johnsson AA, Sawaii T, Jacobsson M, Granstrom G, Turesson I (2000) A histomorphometric and biomechanical study of the effect of delayed titanium implant placement in irradiated rabbit bone. Clin Implant Dent Relat Res 2(1):42–49

    CAS  PubMed  Google Scholar 

  62. Asikainen P, Klemetti E, Kotilainen R, Vuillemin T, Sutter F, Voipio HM et al (1998) Osseointegration of dental implants in bone irradiated with 40, 50 or 60 Gy doses. An experimental study with beagle dogs. Clin Oral Implants Res 9(1):20–25

    CAS  PubMed  Google Scholar 

  63. Schon R, Ohno K, Kudo M, Michi K (1996) Peri-implant tissue reaction in bone irradiated the fifth day after implantation in rabbits: histologic and histomorphometric measurements. Int J Oral Maxillofac Implants 11(2):228–238

    CAS  PubMed  Google Scholar 

  64. Verdonck HW, Meijer GJ, Laurin T, Nieman FH, Stoll C, Riediger D et al (2008) Implant stability during osseointegration in irradiated and non-irradiated minipig alveolar bone: an experimental study. Clin Oral Implants Res 19(2):201–206

    PubMed  Google Scholar 

  65. Thorn JJ, Hansen HS, Specht L, Bastholt L (2000) Osteoradionecrosis of the jaws: clinical characteristics and relation to the field of irradiation. J Oral Maxillofac Surg 58(10):1088–1093, discussion 93–5

    CAS  PubMed  Google Scholar 

  66. Xu J, Zheng Z, Fang D, Gao R, Liu Y, Fan ZP et al (2012) Early-stage pathogenic sequence of jaw osteoradionecrosis in vivo. J Dent Res 91(7):702–708

    CAS  PubMed  Google Scholar 

  67. Tamplen M, Trapp K, Nishimura I, Armin B, Steinberg M, Beumer J et al (2011) Standardized analysis of mandibular osteoradionecrosis in a rat model. Otolaryngol Head Neck Surg 145(3):404–410

    PubMed  Google Scholar 

  68. Fenner M, Park J, Schulz N, Amann K, Grabenbauer GG, Fahrig A et al (2010) Validation of histologic changes induced by external irradiation in mandibular bone. An experimental animal model. J Craniomaxillofac Surg 38(1):47–53

    PubMed  Google Scholar 

  69. Zhang WB, Zheng LW, Chua D, Cheung LK (2010) Bone regeneration after radiotherapy in an animal model. J Oral Maxillofac Surg 68(11):2802–2809

    PubMed  Google Scholar 

  70. Colella G, Cannavale R, Pentenero M, Gandolfo S (2007) Oral implants in radiated patients: a systematic review. Int J Oral Maxillofac Implants 22(4):616–622

    PubMed  Google Scholar 

  71. Yerit KC, Posch M, Seemann M, Hainich S, Dortbudak O, Turhani D et al (2006) Implant survival in mandibles of irradiated oral cancer patients. Clin Oral Implants Res 17(3):337–344

    PubMed  Google Scholar 

  72. Liddelow G, Klineberg I (2011) Patient-related risk factors for implant therapy. A critique of pertinent literature. Aust Dent J 56(4):417–426, quiz 41

    CAS  PubMed  Google Scholar 

  73. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O et al (1977) Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl 16:1–132

    CAS  PubMed  Google Scholar 

  74. Roberts WE (1988) Bone tissue interface. J Dent Educ 52(12):804–809

    CAS  PubMed  Google Scholar 

  75. Meredith N (1998) Assessment of implant stability as a prognostic determinant. Int J Prosthodont 11(5):491–501

    CAS  PubMed  Google Scholar 

  76. Davies JE (1998) Mechanisms of endosseous integration. Int J Prosthodont 11(5):391–401

    CAS  PubMed  Google Scholar 

  77. Raghavendra S, Wood MC, Taylor TD (2005) Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 20(3):425–431

    PubMed  Google Scholar 

  78. Sennerby L, Roos J (1998) Surgical determinants of clinical success of osseointegrated oral implants: a review of the literature. Int J Prosthodont 11(5):408–420

    CAS  PubMed  Google Scholar 

  79. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D (1998) Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 40(1):1–11

    CAS  PubMed  Google Scholar 

  80. Degidi M, Daprile G, Piattelli A (2010) Determination of primary stability: a comparison of the surgeon's perception and objective measurements. Int J Oral Maxillofac Implants 25(3):558–561

    PubMed  Google Scholar 

  81. Friberg B, Sennerby L, Grondahl K, Bergstrom C, Back T, Lekholm U (1999) On cutting torque measurements during implant placement: a 3-year clinical prospective study. Clin Implant Dent Relat Res 1(2):75–83

    CAS  PubMed  Google Scholar 

  82. Atsumi M, Park SH, Wang HL (2007) Methods used to assess implant stability: current status. Int J Oral Maxillofac Implants 22(5):743–754

    PubMed  Google Scholar 

  83. Liu C, Tsai MT, Huang HL, Chen MY, Hsu JT, Su KC, et al (2012 Jan 10) Relation between insertion torque and bone–implant contact percentage: an artificial bone study. Clin Oral Investig

  84. Cho KC, Baek SH (2011 Nov 3) Effects of predrilling depth and implant shape on the mechanical properties of orthodontic mini-implants during the insertion procedure. Angle Orthod

  85. Norton MR (2011) The influence of insertion torque on the survival of immediately placed and restored single-tooth implants. Int J Oral Maxillofac Implants 26(6):1333–1343

    PubMed  Google Scholar 

  86. Ottoni JM, Oliveira ZF, Mansini R, Cabral AM (2005) Correlation between placement torque and survival of single-tooth implants. Int J Oral Maxillofac Implants 20(5):769–776

    PubMed  Google Scholar 

  87. Johansson C, Albrektsson T (1987) Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. Int J Oral Maxillofac Implants 2(2):69–75

    CAS  PubMed  Google Scholar 

  88. Sullivan DY, Sherwood RL, Collins TA, Krogh PH (1996) The reverse-torque test: a clinical report. Int J Oral Maxillofac Implants 11(2):179–185

    CAS  PubMed  Google Scholar 

  89. Meredith N (1998) A review of nondestructive test methods and their application to measure the stability and osseointegration of bone anchored endosseous implants. Crit Rev Biomed Eng 26(4):275–291

    CAS  PubMed  Google Scholar 

  90. Sennerby L, Meredith N (2008) Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications. Periodontol 47:51–66

    Google Scholar 

  91. Barewal RM, Oates TW, Meredith N, Cochran DL (2003) Resonance frequency measurement of implant stability in vivo on implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants 18(5):641–651

    PubMed  Google Scholar 

  92. Nedir R, Bischof M, Szmukler-Moncler S, Bernard JP, Samson J (2004) Predicting osseointegration by means of implant primary stability. Clin Oral Implants Res 15(5):520–528

    PubMed  Google Scholar 

  93. Friberg B, Sennerby L, Linden B, Grondahl K, Lekholm U (1999) Stability measurements of one-stage Branemark implants during healing in mandibles. A clinical resonance frequency analysis study. Int J Oral Maxillofac Surg 28(4):266–272

    CAS  PubMed  Google Scholar 

  94. Skalak R (1983) Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent 49(6):843–848

    CAS  PubMed  Google Scholar 

  95. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25(7):889–902

    CAS  PubMed  Google Scholar 

  96. Vercaigne S, Wolke JG, Naert I, Jansen JA (1998) Histomorphometrical and mechanical evaluation of titanium plasma-spray-coated implants placed in the cortical bone of goats. J Biomed Mater Res 41(1):41–48

    CAS  PubMed  Google Scholar 

  97. Abrahamsson I, Zitzmann NU, Berglundh T, Wennerberg A, Lindhe J (2001) Bone and soft tissue integration to titanium implants with different surface topography: an experimental study in the dog. Int J Oral Maxillofac Implants 16(3):323–332

    CAS  PubMed  Google Scholar 

  98. Yildirim M, Spiekermann H, Handt S, Edelhoff D (2001) Maxillary sinus augmentation with the xenograft Bio-Oss and autogenous intraoral bone for qualitative improvement of the implant site: a histologic and histomorphometric clinical study in humans. Int J Oral Maxillofac Implants 16(1):23–33

    CAS  PubMed  Google Scholar 

  99. Watzak G, Zechner W, Ulm C, Tangl S, Tepper G, Watzek G (2005) Histologic and histomorphometric analysis of three types of dental implants following 18 months of occlusal loading: a preliminary study in baboons. Clin Oral Implants Res 16(4):408–416

    PubMed  Google Scholar 

  100. von Wilmowsky C, Bauer S, Lutz R, Meisel M, Neukam FW, Toyoshima T et al (2009) In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. J Biomed Mater Res B Appl Biomater 89(1):165–171

    Google Scholar 

  101. Schlegel KA, Kloss FR, Kessler P, Schultze-Mosgau S, Nkenke E, Wiltfang J (2003) Bone conditioning to enhance implant osseointegration: an experimental study in pigs. Int J Oral Maxillofac Implants 18(4):505–511

    PubMed  Google Scholar 

  102. Aerssens J, Boonen S, Joly J, Dequeker J (1997) Variations in trabecular bone composition with anatomical site and age: potential implications for bone quality assessment. J Endocrinol 155(3):411–421

    CAS  PubMed  Google Scholar 

  103. Albrektsson T (2008) Hard tissue implant interface. Aust Dent J 53(Suppl 1):S34–S38

    PubMed  Google Scholar 

  104. Qin M, Lin S, Song Z, Tian J, Chen F, Yan H et al (1999) Comparison of bone mass in forearm, lumbar vertebra and hip by single and/or dual energy X-ray absorptiometry. Chin Med Sci J 14(2):117–120

    CAS  PubMed  Google Scholar 

  105. Cherian RA, Haddaway MJ, Davie MW, McCall IW, Cassar-Pullicino VN (2000) Effect of Paget's disease of bone on areal lumbar spine bone mineral density measured by DXA, and density of cortical and trabecular bone measured by quantitative CT. Br J Radiol 73(871):720–726

    CAS  PubMed  Google Scholar 

  106. Frederiksen NL (1995) Diagnostic imaging in dental implantology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 80(5):540–554

    CAS  PubMed  Google Scholar 

  107. Myoung H, Kim YY, Heo MS, Lee SS, Choi SC, Kim MJ (2001) Comparative radiologic study of bone density and cortical thickness of donor bone used in mandibular reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 92(1):23–29

    CAS  PubMed  Google Scholar 

  108. Ericsson I, Nilner K (2002) Early functional loading using Branemark dental implants. Int J Periodontics Restorative Dent 22(1):9–19

    PubMed  Google Scholar 

  109. Kobayashi K, Shimoda S, Nakagawa Y, Yamamoto A (2004) Accuracy in measurement of distance using limited cone-beam computerized tomography. Int J Oral Maxillofac Implants 19(2):228–231

    PubMed  Google Scholar 

  110. Apostolakis D, Brown JE (2012) The anterior loop of the inferior alveolar nerve: prevalence, measurement of its length and a recommendation for interforaminal implant installation based on cone beam CT imaging. Clin Oral Implants Res 23(9):1022–1030

    PubMed  Google Scholar 

  111. Pelinsari Lana J, Moura Rodrigues Carneiro P, de Carvalho Machado V, Eduardo Alencar de Souza P, Ricardo Manzi F, Campolina Rebello Horta M (2011 Oct 3) Anatomic variations and lesions of the maxillary sinus detected in cone beam computed tomography for dental implants. Clin Oral Implants Res

  112. Naitoh M, Suenaga Y, Gotoh K, Ito M, Kondo S, Ariji E (2010) Observation of maxillary sinus septa and bony bridges using dry skulls between Hellman's dental age of IA and IIIC. Okajimas Folia Anat Jpn 87(2):41–47

    PubMed  Google Scholar 

  113. Naitoh M, Hayashi H, Tsukamoto N, Ariji E (2012) Labial bone assessment surrounding dental implant using cone-beam computed tomography: an in vitro study. Clin Oral Implants Res 23(8):970–974

    PubMed  Google Scholar 

  114. Raes F, Renckens L, Aps J, Cosyn J, De Bruyn H (2011 Oct 18) Reliability of circumferential bone level assessment around single implants in healed ridges and extraction sockets using cone beam CT. Clin Implant Dent Relat Res

  115. Hermann JS, Schoolfield JD, Nummikoski PV, Buser D, Schenk RK, Cochran DL (2001) Crestal bone changes around titanium implants: a methodologic study comparing linear radiographic with histometric measurements. Int J Oral Maxillofac Implants 16(4):475–485

    CAS  PubMed  Google Scholar 

  116. Prevrhal S, Genant HK (1999) Quantitative computer tomography. Radiologe 39(3):194–202

    CAS  PubMed  Google Scholar 

  117. Reichel H, Lebek S, Alter C, Hein W (1998) Biomechanical and densitometric bone properties after callus distraction in sheep. Clin Orthop Relat Res 357:237–246

    PubMed  Google Scholar 

  118. Müller R (2002) The Zürich experience. One decade of threedimensional high-resolution computed tomography. Top Magn Reson Imaging 13:307–322

    PubMed  Google Scholar 

  119. Ruegsegger P, Koller B, Muller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58(1):24–29

    CAS  PubMed  Google Scholar 

  120. Muller R, Hildebrand T, Ruegsegger P (1994) Non-invasive bone biopsy: a new method to analyse and display the three-dimensional structure of trabecular bone. Phys Med Biol 39(1):145–164

    CAS  PubMed  Google Scholar 

  121. Holdsworth D, Thornton M (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20:34–39

    Google Scholar 

  122. Smet ED, Jaecques S, Wevers M, Jansen J, Jacobs R, Sloten J et al (2006) Effect of controlled early implant loading on bone healing and bone mass in guinea pigs, as assessed by micro-CT and histology. Eur J Oral Sci 3:232–242

    Google Scholar 

  123. Suetens P (2002) Fundamentals of medical imaging. Cambridge University Press, Cambridge

  124. Stoppie N, van der Waerden JP, Jansen JA, Duyck J, Wevers M, Naert IE (2005) Validation of microfocus computed tomography in the evaluation of bone implant specimens. Clin Implant Dent Relat Res 7(2):87–94

    PubMed  Google Scholar 

  125. Cooper DM, Matyas JR, Katzenberg MA, Hallgrimsson B (2004) Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity. Calcif Tissue Int 74(5):437–447

    CAS  PubMed  Google Scholar 

  126. Chappard D, Retailleau-Gaborit N, Legrand E, Basle MF, Audran M (2005) Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 20(7):1177–1184

    PubMed  Google Scholar 

  127. von Wilmowsky C, Schwarz S, Kerl JM, Srour S, Lell M, Felszeghy E et al (2010) Reconstruction of a mandibular defect with autogenous, autoclaved bone grafts and tissue engineering: an in vivo pilot study. J Biomed Mater Res A 93(4):1510–1518

    Google Scholar 

  128. Boivin G, Meunier PJ (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int 70(6):503–511

    CAS  PubMed  Google Scholar 

  129. Hobson RS (1998) A pilot study of mineralization distribution in the cortical bone of the human mandible. Arch Oral Biol 43(8):633–639

    CAS  PubMed  Google Scholar 

  130. Engstrom A, Engfeldt B (1953) Lamellar structure of osteons demonstrated by microradiography. Experientia 9(1):19

    CAS  PubMed  Google Scholar 

  131. Schortinghuis J, Ruben JL, Meijer HJ, Bronckers AL, Raghoebar GM, Stegenga B (2003) Microradiography to evaluate bone growth into a rat mandibular defect. Arch Oral Biol 48(2):155–160

    PubMed  Google Scholar 

  132. Donath K, Breuner G (1982) A method for the study of undecalcified bones and teeth with attached soft tissues. The Sage–Schliff (sawing and grinding) technique. J Oral Pathol 11(4):318–326

    CAS  PubMed  Google Scholar 

  133. Grahma J (1955) A technique of microradiography. Radiography 246:120–127

    Google Scholar 

  134. Hahn M, Vogel M, Schultz C, Niecke M, Delling G (1992) Histologic reactions of the bone–implant zone and cortical bone area after long-term hip replacement. Chirurg 63(11):958–963

    CAS  PubMed  Google Scholar 

  135. Stanford CM, Jacobson PA, Eanes ED, Lembke LA, Midura RJ (1995) Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106-01 BSP). J Biol Chem 270(16):9420–9428

    CAS  PubMed  Google Scholar 

  136. Kashiwa HK, Park HZ (1976) Light microscopic localization of labile calcium in hypertrophied chondrocytes of long bone with alizarin red S. J Histochem Cytochem 24(5):634–642

    CAS  PubMed  Google Scholar 

  137. Bendick PJ, Glover JL, Hankin R, Reilly MK, Dalsing MC, Waller BF (1988) Carotid plaque morphology: correlation of duplex sonography with histology. Ann Vasc Surg 2(1):6–13

    CAS  PubMed  Google Scholar 

  138. von der Mark K, von der Mark H (1977) The role of three genetically distinct collagen types in endochondral ossification and calcification of cartilage. J Bone Joint Surg Br 59-B(4):458–464

    PubMed  Google Scholar 

  139. Irie K, Zalzal S, Ozawa H, McKee MD, Nanci A (1998) Morphological and immunocytochemical characterization of primary osteogenic cell cultures derived from fetal rat cranial tissue. Anat Rec 252(4):554–567

    CAS  PubMed  Google Scholar 

  140. Malaval L, Modrowski D, Gupta AK, Aubin JE (1994) Cellular expression of bone-related proteins during in vitro osteogenesis in rat bone marrow stromal cell cultures. J Cell Physiol 158(3):555–572

    CAS  PubMed  Google Scholar 

  141. Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS et al (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143(3):420–430

    CAS  PubMed  Google Scholar 

  142. Charles P, Mosekilde L, Risteli L, Risteli J, Eriksen EF (1994) Assessment of bone remodeling using biochemical indicators of type I collagen synthesis and degradation: relation to calcium kinetics. Bone Miner 24(2):81–94

    CAS  PubMed  Google Scholar 

  143. Christenson RH (1997) Biochemical markers of bone metabolism: an overview. Clin Biochem 30(8):573–593

    CAS  PubMed  Google Scholar 

  144. Bhatnagar RS, Qian JJ, Wedrychowska A, Sadeghi M, Wu YM, Smith N (1999) Design of biomimetic habitats for tissue engineering with P-15, a synthetic peptide analogue of collagen. Tissue Eng 5(1):53–65

    CAS  PubMed  Google Scholar 

  145. Nguyen H, Qian JJ, Bhatnagar RS, Li S (2003) Enhanced cell attachment and osteoblastic activity by P-15 peptide-coated matrix in hydrogels. Biochem Biophys Res Commun 311(1):179–186

    CAS  PubMed  Google Scholar 

  146. Swaminathan R (2001) Biochemical markers of bone turnover. Clin Chim Acta 313(1–2):95–105

    CAS  PubMed  Google Scholar 

  147. Price CP, Thompson PW (1995) The role of biochemical tests in the screening and monitoring of osteoporosis. Ann Clin Biochem 32(Pt 3):244–260

    CAS  PubMed  Google Scholar 

  148. Thorwarth M, Rupprecht S, Falk S, Felszeghy E, Wiltfang J, Schlegel KA (2005) Expression of bone matrix proteins during de novo bone formation using a bovine collagen and platelet-rich plasma (prp)—an immunohistochemical analysis. Biomaterials 26(15):2575–2584

    CAS  PubMed  Google Scholar 

  149. Thorwarth M, Wehrhan F, Schultze-Mosgau S, Wiltfang J, Schlegel KA (2006) PRP modulates expression of bone matrix proteins in vivo without long-term effects on bone formation. Bone 38(1):30–40

    CAS  PubMed  Google Scholar 

  150. Frost HM, Villanueva AR, Roth H, Stanisavljevic S (1961) Tetracycline bone labeling. J New Drugs 1:206–216

    CAS  PubMed  Google Scholar 

  151. Jee WS (2005) The past, present, and future of bone morphometry: its contribution to an improved understanding of bone biology. J Bone Miner Metab 23(Suppl):1–10

    PubMed  Google Scholar 

  152. Regauer M, Jurgens I, Kotsianos D, Stutzle H, Mutschler W, Schieker M (2005) New-bone formation by osteogenic protein-1 and autogenic bone marrow in a critical tibial defect model in sheep. Zentralbl Chir 130(4):338–345

    CAS  PubMed  Google Scholar 

  153. Knöfler W, Graf H, Gröschel T, Löwicke G (1990) Bone reaction caused by biomaterials. Z Zahnärztliche Implantol 6:145–152

    Google Scholar 

  154. Donath K (1988) The ‘sawing and grinding’ technique for the preparation of histologic samples of non-cutable tissues and materials. Der Präparator 34:197–206

    Google Scholar 

  155. Sverzut AT, Crippa GE, Morra M, de Oliveira PT, Beloti MM, Rosa AL (2012) Effects of type I collagen coating on titanium osseointegration: histomorphometric, cellular and molecular analyses. Biomed Mater 7(3):035007

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Jochen Zwerina, Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen–Nuremberg, for the von Kossa bone sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius von Wilmowsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Wilmowsky, C., Moest, T., Nkenke, E. et al. Implants in bone: Part II. Research on implant osseointegration. Oral Maxillofac Surg 18, 355–372 (2014). https://doi.org/10.1007/s10006-013-0397-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-013-0397-2

Keywords

Navigation