Skip to main content
Log in

Simultanes nichtinvasives Monitoring mit Laser-Doppler-Flussmessung und Gewebespektrometrie bei fasziokutanen Radialislappen und osteokutanen Fibulatransplantaten

Simultaneous noninvasive monitoring for radial forearm and fibula flaps using laser Doppler flowmetry and tissue spectrophotometry

  • Originalien
  • Published:
Mund-, Kiefer- und Gesichtschirurgie Aims and scope Submit manuscript

Zusammenfassung

Fragestellung

In der Literatur werden Monitoringverfahren häufig in zwei Hauptgruppen unterteilt: Messungen zur Gewebeperfusion und solche zur Gewebeoxygenierung. Mit dem O2C („oxygen to see“) steht nun erstmals ein Gerät zur Verfügung, das beide Messmethoden vereint. In einer prospektiven Studie sollte untersucht werden, ob hiermit eine notwendige Revision mikrochirurgischer Transplantate frühzeitig erkannt oder auch eine unnötige Revision vermieden werden kann. Weiterhin stellte sich die Frage, ob Grenzwerte für den erfolgreichen Verlauf eines Lappentransfers angegeben werden können und ob sich diese bei den verschiedenen Transplantattypen unterscheiden.

Patienten und Methode

In einer prospektiven Studie wurden 82 mikrochirurgische Transplantate (61 fasziokutane Radialislappen und 21 osteokutane Fibulalappen) einem definierten Monitoring über 14 Tage unterzogen.

Ergebnisse

Bei 12 (14,6%) von 82 freien mikrochirurgischen Transplantaten konnten Perfusionsstörungen gemessen werden. In 7 Fällen erfolgte eine Revision, die in 5 Fällen zur Rettung der Transplantate führte. Insgesamt waren 5 Transplantatverluste (3 Radialis- und 2 Fibulatransplantate) zu verzeichnen. Die Gesamterfolgsrate betrug somit 93,4%. Durch das O2C-Gerät wurden venöse Okklusionen anhand einer Zunahme der Hämoglobinkonzentration um mehr als 30% und arterielle Perfusionsstörungen anhand der rapiden Abnahme des Blutflusses und der Hämoglobinoxygenierung in allen Fällen frühzeitig und vor der klinischen Manifestation erkannt. Als kritische Untergrenze für eine ausreichende Transplantatversorgung ergaben sich für Radialistransplantate eine Hämoglobinoxygenierung von 15%, ein oberflächlicher Flow von 10 AU und ein tiefer Flow von 20 AU. Für Fibulatransplantate wurden eine Hämoglobinoxygenierung von 10%, ein oberflächlicher Flow von 5 AU und ein tiefer Flow von 15 AU als untere Grenzwerte festgestellt.

Schlussfolgerung

Das perioperative Monitoring mit dem O2C-Gerät schließt durch die kombinierte Anwendung von Laser-Doppler-Flussmessung und Gewebespektrometrie in einer Messsonde die Lücke zwischen zwei etablierten Monitoringmethoden. Die simultane nichtinvasive Erfassung von Hämoglobinoxygenierung, Hämoglobinkonzentration, Blutfluss und Blutflussgeschwindigkeit in zwei verschiedenen Gewebetiefen ermöglicht eine Verbesserung der Erfolgsquote des mikrochirurgischen Gewebetransfers.

Abstract

Aim

In the literature currently available monitoring devices are usually divided into two major groups: those for monitoring perfusion and those for measuring tissue oxygenation. The O2C (oxygen to see) system combines these two ways of monitoring free flap viability. The aim of this prospective study was to determine the necessity of flap revision and when unnecessary revision can be avoided. Another point of interest was the question of whether critical values for the successful course of free flaps could be defined and in addition whether such values would differ for different flap types.

Patients and methods

In a prospective study 82 free flaps (61 radial forearm flaps and 21 fibula flaps) were monitored with the O2C monitoring unit. Measurements were carried out intraoperatively and postoperatively up to 14 days.

Results

Perfusion compromise occurred in 12 (14.6%) of 82 monitored free flaps. Operative exploration was performed in seven cases, in five of them successfully. Five flaps (three radial forearm and two fibula flaps) were lost due to vascular compromise, which led to an overall success rate of 93.4%. Venous congestion was identified by a rapid increase in hemoglobin concentration of more than 30%. An abrupt decline of blood flow and hemoglobin oxygenation indicated arterial occlusion. Vascular complications were detected in all cases prior to clinical assessment with no false positive or negative results. For radial forearm flaps a hemoglobin oxygenation of 15%, a superficial flow of 10 AU, and a deep flow of 20 AU were identified as minimum values for flap viability. For fibula flaps a hemoglobin oxygenation of 10%, a superficial flow of 5 AU, and a deep flow of 15 AU were determined as minimum values.

Conclusion

O2C combines laser Doppler flowmetry and tissue spectrophotometry and for the first time allows simultaneous measurement of the microcirculatory parameters including blood flow, flow velocity, hemoglobin concentration, and hemoglobin oxygenation. We found this new noninvasive technique to be a reliable and accurate method for evaluating flap viability and improving the success rate in free flap transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Angel MF, Mellow CG, Knight KR, O’Brian BM (1990) Secondary ischemia time in rodents: contrasting complete pedicle interruption with venous obstruction. Plast Reconstr Surg 85: 789–793

    PubMed  Google Scholar 

  2. Clinton MS, Sepka RS, Bristol D, Pederson WC, Barwick WJ, Serafin D, Klitzman B (1991) Establishment of normal ranges of laser Doppler blood flow in autologous tissue transplants. Plast Reconstr Surg 87: 299–309

    PubMed  Google Scholar 

  3. Disa JJ, Cordeiro PG, Hidalgo DA (1999) Efficacy of conventional monitoring techniques in free tissue transfer: an 11-year experience in 750 cases. Plast Reconstr Surg 104: 97–101

    PubMed  Google Scholar 

  4. Furnas H, Rosen JM (1991) Monitoring in microvascular surgery. Ann Plast Surg 26: 265–272

    PubMed  Google Scholar 

  5. Heller L, Levin LS, Klitzman B (2001) Laser Doppler flowmeter monitoring of free-tissue transfers: blood flow in normal and complicated cases. Plast Reconstr Surg 107: 1739–1745

    Article  PubMed  Google Scholar 

  6. Hickerson WL, Colgin SL, Proctor KG (1990) Regional variations of laser Doppler flow in ischemic skin flaps. Plast Reconstr Surg 86: 319–326

    PubMed  Google Scholar 

  7. Hirigoyen MB, Urken ML, Weinberg H (1995) Free flap monitoring: a review of current practice. Microsurgery 16: 723–726

    PubMed  Google Scholar 

  8. Hjortdal VE, Hauge E, Hansen ES (1992) Differential effects of venous stasis and arterial insufficiency on tissue oxygenation in myocutaneous island flaps: an experimental study in pigs. Plast Reconstr Surg 89: 521–529

    PubMed  Google Scholar 

  9. Kamolz LP, Giovanoli P, Haslik W, Koller R, Frey M (2002) Continuous free-flap monitoring with tissue-oxygen measurements: three-year experience. J Reconstr Microsurg 18: 487–491

    Article  PubMed  Google Scholar 

  10. Liss AG, Liss P (2000) Use of a modified oxygen microelectrode and laser-Doppler flowmetry to monitor changes in oxygen tension and microcirculation in a flap. Plast Reconstr Surg 105: 2072–2078

    PubMed  Google Scholar 

  11. Machens HG, Mailaender P, Rieck B, Berger A (1994) Techniques of postoperative blood flow monitoring after free tissue transfer: an overview. Microsurgery 15: 778–786

    PubMed  Google Scholar 

  12. May JW Jr, Chait LA, O’Brian BM, Hurley JV (1978) The no-reflow phenomenon in experimental free flaps. Plast Reconstr Surg 61: 256–267

    PubMed  Google Scholar 

  13. Numata T, Iida Y, Shiba K, Hanazawa T, Terada N, Nagata H, Konno A (2002) Usefulness of color Doppler sonography for assessing hemodynamics of free flaps for head and neck reconstruction. Ann Plast Surg 48: 607–612

    Article  PubMed  Google Scholar 

  14. Pasyk KA, Thomas SV, Hassett CA, Cherry GW, Faller R (1989) Regional differences in capillary density of the normal human dermis. Plast Reconstr Surg 83: 939–945

    PubMed  Google Scholar 

  15. Schultze-Mosgau S, Wiltfang J, Birklein F, Neukam FW (2003) Microlightguide spectrophotometry as an intraoral monitoring method in free vascular soft tissue flaps. J Oral Maxillofac Surg 61: 292–297

    Article  PubMed  Google Scholar 

  16. Svensson H, Holmberg J, Svedman P (1993) Interpreting laser Doppler recordings from free flaps. Scand J Plast Reconstr Surg Hand Surg 27: 81–87

    PubMed  Google Scholar 

  17. Thorniley MS, Sinclair JS, Barnett NJ, Shurey CB, Green CJ (1998) The use of near-infrared spectroscopy for assessing flap viability during reconstructive surgery. Br J Plast Surg 51: 218–226

    Article  PubMed  Google Scholar 

  18. Tsuchida Y (1987) Regional differences in the skin blood flow at various sites of the body studied by xenon 133. Plast Reconstr Surg 80: 705–710

    PubMed  Google Scholar 

  19. Tsuzuki K, Yanai A, Bandoh Y (1990) A contrivance for monitoring skin flaps with a Doppler flowmeter. J Reconstr Microsurg 6: 363–366

    PubMed  Google Scholar 

  20. Wolff KD, Kolberg A, Mansmann U (1998) Cutaneous hemoglobin oxygenation of different free flap donor sites. Plast Reconstr Surg 102: 1537–1543

    PubMed  Google Scholar 

  21. Wolff KD, Marks C, Uekermann B, Specht M, Frank KH (1996) Monitoring of flaps by measurement of intracapillary haemoglobin oxygenation with EMPHO II: experimental and clinical study. Br J Oral Maxillofac Surg 34: 524–529

    Article  PubMed  Google Scholar 

  22. Yuen JC, Feng Z (2000) Monitoring free flaps using the laser Doppler flowmeter: five-year experience. Plast Reconstr Surg 105: 55–61

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Hölzle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hölzle, F., Rau, A., Swaid, S. et al. Simultanes nichtinvasives Monitoring mit Laser-Doppler-Flussmessung und Gewebespektrometrie bei fasziokutanen Radialislappen und osteokutanen Fibulatransplantaten. Mund Kiefer GesichtsChir 9, 290–299 (2005). https://doi.org/10.1007/s10006-005-0636-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-005-0636-2

Schlüsselwörter

Keywords

Navigation