Skip to main content
Log in

Analysis of the Rotational Structure of CO2 by FTIR Spectroscopy

  • Laboratories and Demonstrations
  • Published:
The Chemical Educator

Abstract

A physical chemistry experiment is described that involves the determination of some spectroscopic parameters of carbon dioxide, a molecule that obeys Bose-Einstein statistics. The main advantage of this experiment is that the spectra are easily recorded, not requiring a gas cell, because the sensitivity and resolution of conventional FTIR spectrometers is good enough to record spectra with a high signal-to-noise ratio and good resolution of the fine rotational structure. From the rotational lines of the antisymmetric stretching band, the moments of inertia and the bond lengths of CO2 in the fundamental and the first-excited state can be accurately obtained. The particular case that carbon dioxide represents helps students understand the restrictions that symmetry and statistics impose on some molecules and the consequences that they have on the absorption of radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo González-Gaitano.

About this article

Cite this article

González-Gaitano, G., Isasi, J.R. Analysis of the Rotational Structure of CO2 by FTIR Spectroscopy. Chem. Educator 6, 362–364 (2001). https://doi.org/10.1007/s00897010521a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00897010521a

Keywords

Navigation