Skip to main content
Log in

Möbius carbon nanobelts interacting with heavy metal nanoclusters

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The interaction between carbon nanostructures and heavy metal clusters is of great interest due to their potential applications as sensors and filters to remove the former from environment. In this work, we investigated the interaction between two types of carbon nanobelts (Möbius-type nanobelt and simple nanobelt) and nickel, cadmium, and lead nanoclusters. Our aim was to determine how both systems interact which would shed light on the potential applications of the carbon nanostructures as pollutant removal and detecting devices.

Methods

To investigate the interaction between carbon nanostructures and heavy metal nanoclusters, we utilized the semiempirical tight binding framework provided by xTB software with the GFN2-xTB Hamiltonian. We performed calculations to determine the best interaction site, lowest energy geometries, complexes stability (using molecular dynamics at 298K), binding energy, and electronic properties. We also carried out a topological study to investigate the nature and intensity of the bonds formed between the metal nanoclusters and the nanobelts. Our results demonstrate that heavy metal nanoclusters have a favorable binding affinity towards both nanobelts, with the Möbius-type nanobelt having a stronger interaction. Additionally, our calculations reveal that the nickel nanocluster has the lowest binding energy, displaying the greatest charge transfer with the nanobelts, which was nearly twice that of the cadmium and lead nanoclusters. Our combined results lead to the conclusion that the nickel nanoclusters are chemisorbed, whereas cadmium and lead nanoclusters are physisorbed in both nanobelts. These findings have significant implications for the development of sensor and filtering devices based on carbon and heavy metal nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings are available to download from https://doi.org/10.5281/zenodo.7823747.

References

  1. Kumar R, Khan MA, Haq N (2014) Application of carbon nanotubes in heavy metals remediation. Crit. Rev. Env. Sci. Tec. 44:1000–1035. https://doi.org/10.1080/10643389.2012.741314

    Article  CAS  Google Scholar 

  2. Hoang AT, Nežiteć Cheng CK, Luque R, Thomas S, Banh TL, Pham VV, Pham XP (2022) Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: a comprehensive review. Chemosphere 287:131959. https://doi.org/10.1016/j.chemosphere.2021.131959

    Article  CAS  PubMed  Google Scholar 

  3. Singh A, Sharma A, Verma RK, Chopade RL, Pandit PP, Nagar V, Aseri V, Choudhary SK, Awasthi G, Awasthi KK, Sankhla MS (2022) In: Dorta DJ, Oliveira DP (eds.) The toxicity of environmental pollutants. IntechOpen. Chap. Heavy metal contamination of water and their toxic effect on living organisms. https://doi.org/10.5772/intechopen.105075

  4. Kolangare IM, Isloor AM, Inamuddin Asiri AM, Ismail AF (2018) Improved desalination by polyamide membranes containing hydrophilic glutamine and glycine. Environ. Chem. Lett. 17:1053–1059. https://doi.org/10.1007/s10311-018-00825-1

    Article  CAS  Google Scholar 

  5. Zwolak A, Sarzyńska M, Szpyrka E, Stawarczyk K (2019) Sources of soil pollution by heavy metals and their accumulation in vegetables: a review. Water, Air, Soil Pollution 230:1–9. https://doi.org/10.1007/s11270-019-4221-y

    Article  CAS  Google Scholar 

  6. Mawari G, Kumar N, Sarkar S, Daga MK, Singh MM, Joshi TK, Khan NA (2022) Heavy metal accumulation in fruits and vegetables and human health risk assessment: findings from Maharashtra. India. Environ. Health Insights 16:117863022211191. https://doi.org/10.1177/11786302221119151

    Article  Google Scholar 

  7. Gupta N, Yadav KK, Kumar V, Prasad S, Cabral-Pinto MMS, Jeon B, Kumar S, Abdellattif MH, Alsukaibia AKD (2022) Investigation of heavy metal accumulation in vegetables and health risk to humans from their consumption. Front. Environ. Sci. 10:791052. https://doi.org/10.3389/fenvs.2022.791052

    Article  Google Scholar 

  8. Moreno-Castilla C, Álvarez-Merino MA, López-Ramón MV, Rivera-Utrilla J (2004) Cadmium ion adsorption on different carbon adsorbents from aqueous solutions. Effect of surface chemistry, pore texture, ionic strength, and dissolved natural organic matter. Langmuir 20:8142–8148. https://doi.org/10.1021/la049253m

    Article  CAS  PubMed  Google Scholar 

  9. Tejada-Tovar C, Villabona-Ortíz, A., González-Delgado A (2022) Adsorption study of continuous heavy metal ions (Pb2+, Cd2+, Ni2+) removal using cocoa (Theobroma cacao l.) pod husks. Materials 15, 6937. https://doi.org/10.3390/ma15196937

  10. Engwa GA, Ferdinand PU, Nwalo FN, Unachukwu MN (2019) In: Karcioglu, O., Arslan, B. (eds.) Poisoning in the modern world. IntechOpen. Chap. Mechanism and health effects of heavy metal toxicity in humans. https://doi.org/10.5772/intechopen.82511

  11. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7:60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baby R, Saifullah B, Hussein MZ (2019) Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res. Lett. 14:341. https://doi.org/10.1186/s11671-019-3167-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoang AT, Pham XD (2018) An investigation of remediation and recovery of oil spill and toxic heavy metal from maritime pollution by a new absorbent material. J. Mar. Eng. Technol. 20:159–169. https://doi.org/10.1080/20464177.2018.1544401

    Article  Google Scholar 

  14. Schuler MS, Relyea RA (2018) A review of the combined threats of road salts and heavy metals to freshwater systems. BioScience 68:327–335. https://doi.org/10.1093/biosci/biy018

    Article  Google Scholar 

  15. Bayuo, J., Rwiza, M.J., Sillanpaä, M., Mtei, KM (2023) Removal of heavy metals from binary and multicomponent adsorption systems using various adsorbents – a systematic review. RSC Adv. 13, 13052–13093. https://doi.org/10.1039/D3RA01660A

  16. Arora B, Attri P (2020) Carbon nanotubes (CNTs): a potential nanomaterial for water purification. J. Compos. Sci. 4:135. https://doi.org/10.3390/jcs4030135

    Article  CAS  Google Scholar 

  17. Moallaei H, Bouchara J-P, Rad A, Singh P, Raizada P, Tran HN, Zafar MN, Giannakoudakis DA, Hosseini-Bandegharaei A (2020) Application of fusarium sp. Immobilized on multi-walled carbon nanotubes for solid-phase extraction and trace analysis of heavy metal cations. Food Chem. 322, 126757. https://doi.org/10.1016/j.foodchem.2020.126757

  18. Ganzoury MA, Chidiac C, Kurtz J, de Lannoy C-F (2020) CNT-sorbents for heavy metals: electrochemical regeneration and closed-loop recycling. J. Hazard. Mater. 393 https://doi.org/10.1016/j.jhazmat.2020.122432

  19. Oliveira AR, Correia AA, Rasteiro MG (2021) Heavy metals removal from aqueous solutions by multiwall carbon nanotubes: effect of MWCNTs dispersion. Nanomaterials 11:2082. https://doi.org/10.3390/nano11082082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rodríguez C, Briano S, Leiva E (2020) Increased adsorption of heavy metal ions in multi-walled carbon nanotubes with improved dispersion stability. Molecules 25:3106. https://doi.org/10.3390/molecules25143106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murjani BO, Kadu PS, Bansod M, Vaidya SS, Yadav MD (2022) Carbon nanotubes in biomedical applications: current status, promises, and challenges. Carbon Lett. 32:1207–1226. https://doi.org/10.1007/s42823-022-00364-4

    Article  Google Scholar 

  22. Segawa Povie G, YNishihara T, Miyauchi Y, Itami K, (2017) Synthesis of a carbon nanobelt. Science 356:172–175. https://doi.org/10.1126/science.aam8158

  23. Nishigaki S, Shibata Y, Nakajima A, Okajima H, Masumoto Y, Osawa T, Muranaka A, Sugiyama H, Horikawa A, Uekusa H, Koshino H, Uchiyama M, Sakamoto A, Tanaka K (2019) Synthesis of belt- and Möbius-shaped cycloparaphenylenes by rhodium-catalyzed alkyne cyclotrimerization. J. Am. Chem. Soc. 141:14955–14960. https://doi.org/10.1021/jacs.9b06197

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Q, Zhang Y-E, Tong S, Wang M-X (2020) Hydrocarbon belts with truncated cone structures. J. Am. Chem. Soc. 142:1196–1199. https://doi.org/10.1021/jacs.9b12181

    Article  CAS  PubMed  Google Scholar 

  25. Li N, Zhang L, Lu C, Sun Y, Wang J (2022) Physical mechanism of spectra in carbon nanobelts under quantum size effect. Nanomaterials 13:159. https://doi.org/10.3390/nano13010159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seenithurai S, Chai J-D (2021) Electronic properties of carbon nanobelts predicted by thermally-assisted-occupation DFT. Nanomaterials 11:2224. https://doi.org/10.3390/nano11092224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Starostin EL, van der Heijden GHM (2007) The shape of a Möbius strip. Nat. Mater. 6:563–567. https://doi.org/10.1038/nmat1929

    Article  CAS  PubMed  Google Scholar 

  28. Cartwright JHE, González DL (2016) Möbius strips before Möbius: topological hints in ancient representations. Math Intell 38(2):69–76. https://doi.org/10.1007/s00283-016-9631-8

    Article  Google Scholar 

  29. Ajami D, Hess K, Köhler F, Náther C, Oeckler O, Simon A, Yamamoto C, Okamoto Y, Herges R (2006) Synthesis and properties of the first Möbius annulenes. Chem - Eur J 12:5434–5445. https://doi.org/10.1002/chem.200600215

    Article  CAS  PubMed  Google Scholar 

  30. Ajami D, Oeckler O, Simon A, Herges R (2003) Synthesis of a Möbius aromatic hydrocarbon. Nature 426:819–821. https://doi.org/10.1038/nature02224

    Article  CAS  PubMed  Google Scholar 

  31. Tanda S, Tsuneta T, Okajima Y, Inagaki K, Yamaya K, Hatakenaka N (2002) A Möbius strip of single crystals. Nature 417(6887):397–398. https://doi.org/10.1038/417397a

    Article  CAS  PubMed  Google Scholar 

  32. Herges R (2006) Topology in chemistry: designing Moöbius molecules. Chem Rev 106:4820–4842

    Article  CAS  PubMed  Google Scholar 

  33. Jiao Y, Lv X, Zhang Y, Li C, Li J, Wu H, Xiao Y, Wu S, Hu Y, Wu D, Chu J (2019) Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture. Nanoscale 11:1370–1378. https://doi.org/10.1039/c8nr09348b

    Article  CAS  PubMed  Google Scholar 

  34. Nie Z-Z, Zuo B, Wang M, Huang S, Chen X-M, Liu Z-Y, Yang H (2021) Lightdriven continuous rotating Möbius strip actuators. Nat Commun 12:22644. https://doi.org/10.1038/s41467-021-22644-9

    Article  CAS  Google Scholar 

  35. Segawa Y, Watanabe T, Yamanoue K, Kuwayama M, Watanabe K, Pirillo J, Hijikata Y, Itami K (2022) Synthesis of a Möbius carbon nanobelt. Nature Synthesis 1:535–541. https://doi.org/10.1038/s44160-022-00075-8

    Article  Google Scholar 

  36. Wu C, Liu W, Cheng Li K, G, Xiong J, Teng T, Che C-M, Yang C, (2020) Face-to-face orientation of quasiplanar donor and acceptor enables highly efficient intramolecular exciplex fluorescence. Angew Chem Int Ed 60:3994–3998. https://doi.org/10.1002/anie.202013051

  37. Li W, Du C-Z, Chen X-Y, Fu L, Gao R-R, Yao Z-F, Wang J-Y, Hu W, Pei J, Wang X-Y (2022) BN-anthracene for high-mobility organic optoelectronic materials through periphery engineering. Angew. Chem. Int. Ed. 61:01464. https://doi.org/10.1002/anie.202201464

    Article  CAS  Google Scholar 

  38. Li R, Zhang Y, Xu X, Zhou Y, Chen M, Sun M (2018) Optical characterizations of two-dimensional materials using nonlinear optical microscopies of CARS, TPEF, and SHG. Nanophotonics 7:873–881. https://doi.org/10.1515/nanoph-2018-0002

    Article  CAS  Google Scholar 

  39. Westerhoff P, Alvarez P, Li Q, Gardea-Torresdey J, Zimmerman J (2016) Overcoming implementation barriers for nanotechnology in drinking water treatment. Environ Sci Nano 3:1241–1253. https://doi.org/10.1039/c6en00183a

    Article  CAS  Google Scholar 

  40. Wu Y, Pang H, Liu Y, Wang X, Yu S, Fu D, Chen J, Wang X (2019) Environmental remediation of heavy metal ions by novel-nanomaterials: a review. Environ Pollut 246:608–620. https://doi.org/10.1016/j.envpol.2018.12.076

    Article  CAS  PubMed  Google Scholar 

  41. Aguiar C, Dattani N, Camps I (2023) Möbius carbon nanobelts interacting with heavy metal nanoclusters. arXiv. https://doi.org/10.48550/arXiv.2304.07368

  42. Virtual NanoLab - Atomistix ToolKit. QuantumWise. v2017.1 (2017)

  43. Bannwarth C, Caldeweyher E, Ehlert S, Hansen A, Pracht P, Seibert J, Spicher S, Grimme S (2020) Extended tight-binding quantum chemistry methods. WIREs Comput Mol Sci 11:1493. https://doi.org/10.1002/wcms.1493

    Article  CAS  Google Scholar 

  44. Grimme S, Bannwarth C, Shushkov P (2017) A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z=1-86). J. Chem. Theory Comput. 13:1989–2009. https://doi.org/10.1021/acs.jctc.7b00118

    Article  CAS  PubMed  Google Scholar 

  45. Plett C, Grimme S (2022) Automated and efficient generation of general molecular aggregate structures. Angew. Chem Int Ed 62. https://doi.org/10.1002/anie.202214477

  46. Grimme S, Bannwarth C, Caldeweyher E, Pisarek J, Hansen A (2017) A general intermolecular force field based on tight-binding quantum chemical calculations. J Chem Phys 147:161708. https://doi.org/10.1063/1.4991798

    Article  CAS  PubMed  Google Scholar 

  47. Camps I (2023) Methods used in nanostructure modeling. https://doi.org/10.48550/arXiv.2303.01226

  48. Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) Charge Model 5: an extension of Hirshfeld population analysis for the accurate description of molecular interactions in gaseous and condensed phases. Journal of Chemical Theory and Computation 8:527–541. https://doi.org/10.1021/ct200866d

    Article  CAS  PubMed  Google Scholar 

  49. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

  50. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

  51. Everett DH (2001) Manual on definitions, terminology and symbols in colloid and surface chemistry. Pure Appl Chem 31(4):577–638. https://doi.org/10.1351/pac197231040577

    Article  Google Scholar 

  52. Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon Press, Oxford, International series of monographs on chemistry

    Google Scholar 

  53. Aguiar C, Dattani N, Camps I (2023) (VIDEOS) Möbius carbon nanobelts interacting with heavy metal nanoclusters. Zenodo. https://doi.org/10.5281/zenodo.8132841

    Article  Google Scholar 

  54. Aguiar C, Dattani N, Camps I , Möbius boron-nitride nanobelts interacting with heavy metal nanoclusters. https://doi.org/10.48550/arXiv.2302.11697

  55. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  56. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. The J Chem Phys 92:5397–5403. https://doi.org/10.1063/1.458517

    Article  CAS  Google Scholar 

  57. Koumpouras K, Larsson JA (2020) Distinguishing between chemical bonding and physical binding using electron localization function (ELF). J Phys Condens Matter 32:315502. https://doi.org/10.1088/1361-648X/ab7fd8

    Article  CAS  PubMed  Google Scholar 

  58. Schmider HL, Becke AD (2000) Chemical content of the kinetic energy density. J Mol Struct THEOCHEM 527:51–61. https://doi.org/10.1016/S0166-1280(00)00477-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge financial support from the Brazilian agencies CNPq, CAPES and FAPEMIG. Part of the results presented here were developed with the help of a CENAPAD-SP (Centro Nacional de Processamento de Alto Desempenho em São Paulo) grant UNICAMP/FINEP–MCT, CENAPAD–UFC (Centro Nacional de Processamento de Alto Desempenho, at Universidade Federal do Ceará, and Digital Research Alliance of Canada (via project bmh-491-09 belonging to Dr. Nike Dattani), for the computational support.

Author information

Authors and Affiliations

Authors

Contributions

C. Aguiar: investigation, formal analysis, writing—original draft, writing—review and editing. N. Dattani: investigation, resources, formal analysis, writing—original draft, writing—review and editing. I. Camps: conceptualization, methodology, software, formal analysis, resources, writing—review and editing, supervision, project administration.

Corresponding authors

Correspondence to N. Dattani or I. Camps.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguiar, C., Dattani, N. & Camps, I. Möbius carbon nanobelts interacting with heavy metal nanoclusters. J Mol Model 29, 277 (2023). https://doi.org/10.1007/s00894-023-05669-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05669-3

Keywords

Navigation