Skip to main content
Log in

The effects of mutation on the drug binding affinity of Neuraminidase: case study of Capsaicin using steered molecular dynamics simulation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The influenza virus is an important respiratory pathogen that causes many incidences of diseases and even death each year. One of the primary factors of this virus is the Neuraminidase surface protein, which causes the virus to leave the host cell and spread to new target cells. The main antiviral medication for influenza is designed as a protein inhibitor ligand that prevents further spread of the disease, and eventually relieves the emerged symptoms. The effectiveness of such inhibitory drugs is highly associated with their binding affinity. In this paper, the binding affinity of an herbal ligand of Capsaicin bound to Neuraminidase of the influenza virus is investigated using steered molecular dynamics (SMD) simulation. Since mutations of the virus directly impact the binding affinity of the inhibitory drugs, different mutations were generated by using Mutagenesis module. The rapid spread of infection during the avian influenza A/H5N1 epidemic has raised concerns about far more dangerous consequences if the virus becomes resistant to current drugs. Currently, oseltamivir (Tamiflu), zanamivir (Relenza), pramivir (Rapivab), and laninamivir (Inavir) are increasingly used to treat the flu. However, with the rapid evolution of the virus, some drug-resistant strains are emerging. Therefore, it is very important to seek alternative therapies and identify the roots of drug resistance. Obtained results demonstrated a reduced binding affinity for the applied mutations. This reduction in binding affinity will cause the virus mutation to become resistant to the drug, which will spread the disease and make it more difficult to treat. From a molecular prospect, this decrease in binding affinity is due to the loss of a number of effective bonds between the ligand and the receptor, which occurs with mutations of the wild-type (WT) species. The results of the present study can be used in the rational design of novel drugs that are compatible with specific mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

N/A.

Code availability

N/A.

References

  1. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J. Viruses: structure, function, and uses. In: Mol Cell Biol 4th edition. WH Freeman; 2000.

  2. Abed Y, Baz M, Boivin G (2006) Impact of neuraminidase mutations conferring influenza resistance to neuraminidase inhibitors in the N1 and N2 genetic backgrounds. Antivir Ther 11(8):971

    CAS  PubMed  Google Scholar 

  3. Daniels R, Nicoll LH. Contemporary medical-surgical nursing. Thomson Delmar Learning,; 2012.

  4. Schnitzler P, Schön K, Reichling J (2001) Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie 56(4):343–347

    CAS  PubMed  Google Scholar 

  5. McKimm-Breschkin JL (2013) Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance. Influenza Other Respi Viruses 7:25–36

    Article  CAS  Google Scholar 

  6. Fujita J. Influenza: advances in diagnosis and management. Springer Nature; 2020.

  7. Ikematsu H, Kawai N (2011) Laninamivir octanoate: a new long-acting neuraminidase inhibitor for the treatment of influenza. Expert Rev Anti Infect Ther 9(10):851–857

    Article  CAS  Google Scholar 

  8. Liu Z, Zhao J, Li W, Shen L, Huang S, Tang J et al (2016) Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine. Sci Rep 6(1):1–9

    Article  Google Scholar 

  9. Tam NM, Nguyen MT, Ngo ST (2017) Evaluation of the absolute affinity of neuraminidase inhibitor using steered molecular dynamics simulations. J Mol Graph Model 77:137–142

    Article  CAS  Google Scholar 

  10. Selvaraj GF, Piramanayagam S, Devadasan V, Hassan S, Krishnasamy K, Srinivasan S. Computational analysis of drug like candidates against Neuraminidase of Human Influenza A virus subtypes. Informatics Med Unlocked. 2020;18:100284.

  11. Wang NX, Zheng JJ (2009) Computational studies of H5N1 influenza virus resistance to oseltamivir. Protein Sci 18(4):707–715

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shu M, Lin Z, Zhang Y, Wu Y, Mei H, Jiang Y (2011) Molecular dynamics simulation of oseltamivir resistance in neuraminidase of avian influenza H5N1 virus. J Mol Model 17(3):587–592

    Article  CAS  Google Scholar 

  13. Han N, Liu X, Mu Y 2012 Exploring the mechanism of zanamivir resistance in a neuraminidase mutant: Mol Dyn Stud. 2012

  14. Woods CJ, Malaisree M, Long B, McIntosh-Smith S, Mulholland AJ (2013) Computational assay of H7N9 influenza neuraminidase reveals R292K mutation reduces drug binding affinity. Sci Rep 3(1):1–6

    Article  Google Scholar 

  15. Thai K-M, Le D-P, Tran T-D, Le M-T (2015) Computational assay of Zanamivir binding affinity with original and mutant influenza neuraminidase 9 using molecular docking. J Theor Biol 385:31–39

    Article  CAS  Google Scholar 

  16. Karthick V, Ramanathan K (2013) Virtual screening for oseltamivir-resistant a (H5N1) influenza neuraminidase from traditional Chinese medicine database: a combined molecular docking with molecular dynamics approach. Springerplus 2(1):1–10

    Article  Google Scholar 

  17. Ren J, Huang J, Yang B, Lin S, Li J, Liao H et al (2019) Docking and molecular dynamics: simulation of the inhibition of H5N1 influenza virus (Anhui 2005) neuraminidase (NA) by chlorogenic acid (CHA). Int J Clin Exp Med 12(8):9815–9823

    CAS  Google Scholar 

  18. Nguyen H, Tran T, Fukunishi Y, Higo J, Nakamura H, Le L (2015) Computational study of drug binding affinity to influenza A Neuraminidase using smooth reaction path generation (SRPG) method. J Chem Inf Model 55(9):1936–1943

    Article  CAS  Google Scholar 

  19. Do P-C, Lee EH, Le L (2018) Steered molecular dynamics simulation in rational drug design. J Chem Inf Model 58(8):1473–1482

    Article  CAS  Google Scholar 

  20. Mai BK, Viet MH, Li MS (2010) Top leads for swine influenza A/H1N1 virus revealed by steered molecular dynamics approach. J Chem Inf Model 50(12):2236–2247

    Article  CAS  Google Scholar 

  21. Mai BK, Li MS (2011) Neuraminidase inhibitor R-125489–a promising drug for treating influenza virus: steered molecular dynamics approach. Biochem Biophys Res Commun 410(3):688–691

    Article  CAS  Google Scholar 

  22. Nguyen H, Nguyen HL, Linh HQ, Nguyen MT (2018) Binding affinity of the L-742,001 inhibitor to the endonuclease domain of A/H1N1/PA influenza virus variants: molecular simulation approaches. Chem Phys 500:26–36

    Article  CAS  Google Scholar 

  23. Ballabh B, Chaurasia OP (2007) Traditional medicinal plants of cold desert Ladakh—used in treatment of cold, cough and fever. J Ethnopharmacol 112(2):341–349

    Article  Google Scholar 

  24. Lee S-J, Umano K, Shibamoto T, Lee K-G 2005 Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem. 2005;91(1):131–7.

  25. Narayanan MM, Nair CB, Sanjeeva SK, Rao PVS, Pullela PK, Barrow CJ (2013) Design of multiligand inhibitors for the swine flu H1N1 neuraminidase binding site. Adv Appl Bioinforma Chem AABC 6:47

    CAS  Google Scholar 

  26. Rains C, Bryson HM (1995) Topical Capsaicin. Drugs Aging 7(4):317–328

    Article  CAS  Google Scholar 

  27. Gevorgyan A, Segboer C, Gorissen R, van Drunen CM, Fokkens W 2015 Capsaicin for non‐allergic rhinitis. Cochrane Database Syst Rev. 2015;(7).

  28. Ternesten-Hasséus E, Johansson E-L, Millqvist E (2015) Cough reduction using capsaicin. Respir Med 109(1):27–37

    Article  Google Scholar 

  29. Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM et al (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443(7107):45–49

    Article  CAS  Google Scholar 

  30. Collins PJ, Haire LF, Lin YP, Liu J, Russell RJ, Walker PA et al (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453(7199):1258–1261

    Article  CAS  Google Scholar 

  31. DeLano WL. Pymol: an open-source molecular graphics tool 2002 CCP4 Newsl protein Crystallogr. 2002;40(1):82–92.

  32. DeLano WL. PyMOL. 2002.

  33. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4(1):1–17

    Article  Google Scholar 

  34. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Páll S, Abraham MJ, Kutzner C, Hess B, Lindahl E 2014 Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In: International conference on exascale applications and software. Springer; 2014. p. 3–27.

  36. Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  Google Scholar 

  37. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J 1981 Interaction models for water in relation to protein hydration. In: Intermolecular forces. Springer; 1981. p. 331–42.

  38. Hockney RW, Goel SP, Eastwood JW (1974) Quiet high-resolution computer models of a plasma. J Comput Phys 14(2):148–158

    Article  Google Scholar 

  39. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  40. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092

    Article  CAS  Google Scholar 

  41. He S, Maibaum L (2018) Identifying the onset of phase separation in quaternary lipid bilayer systems from coarse-grained simulations. J Phys Chem B 122(14):3961–3973

    Article  CAS  Google Scholar 

  42. Berendsen HJC, van Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  43. Petřek M, Otyepka M, Banáš P, Košinová P, Koča J, Damborský J (2006) CAVER: a new tool to explore routes from protein clefts, pockets and cavities. BMC Bioinformatics 7(1):1–9

    Article  Google Scholar 

  44. Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998) Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate− DNA helices. J Am Chem Soc 120(37):9401–9409

    Article  CAS  Google Scholar 

  45. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33(12):889–897

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N/A.

Corresponding author

Correspondence to Hadi Taghizadeh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighpour, D., Taghizadeh, H. The effects of mutation on the drug binding affinity of Neuraminidase: case study of Capsaicin using steered molecular dynamics simulation. J Mol Model 28, 36 (2022). https://doi.org/10.1007/s00894-021-05005-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-05005-7

Keywords

Navigation