Skip to main content
Log in

Investigation of structural evolution in the Cu–Zr metallic glass at cryogenic temperatures by using molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In the present work, investigation of structural evolution of Cu33Zr67 specimen during the cooling process from 2500 down to the 300 K, 200 K, 150 K, 100 K, 50 K, and 10 K has been performed at cooling rate of 5 K/ps using molecular dynamics simulation. The pair distribution function (PDF) reveals that Zr‒Zr pair causes the splitting of the first peak of the Cu33Zr67 glass at a lower temperature with an increase in height. Splitting of the first and second peaks supports the presence of the inhomogeneous structure with a statistical average of crystal-like and disordered structural regions in the Cu33Zr67 glass. Voronoi cluster analysis indicated that quasi icosahedral clusters such as < 284 > , < 0285 > , and < 0282 > ; mixed-type cluster such as < 0364 > ; and crystal-like clusters such as < 0446 > are responsible for stabilization of glassy phase at 300 K, 200 K, 150 K, 100 K, 50 K, and 10 K. Similarly, the maximum population of the Cu-centered and Zr-centered < 0286 > quasi icosahedral clusters support the stability of the glassy phase over the studied temperature range. Besides, the maximum population of Cu-centered < 0367 > and Zr-centered < 0364 > , < 0367 > , < 0363 > , and < 0365 > mixed-type clusters and Cu-centered < 0448 > and Zr-centered < 0448 > , < 0445 > , < 0446 > , and < 0444 > crystal-like clusters support the possibility of the presence of intermediate phase of CuZr2 at lower temperatures as observed from PDFs. Mean square displacement (MSD) for the Cu33Zr67 glass shows that the diffusion coefficient of Cu and Zr atoms reduces with decreasing temperature from 300 to 10 K. Diversity parameter (d) was found to decrease with decreasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Reproduced with permission from AIP Publishing House)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

On reasonable request, it will be available.

References

  1. Parsapour H, Ajori S, Ansari R (2021) A molecular dynamics study on the tensile characteristics of various metallic glass nanocomposites reinforced by Weyl semimetals three-dimensional graphene network. Eur J Mech A Solids 85:104104. https://doi.org/10.1016/j.euromechsol.2020.104104

    Article  Google Scholar 

  2. Suryanarayana C, Inoue A (2011) Bulk metallic glasses. CRC Press, Boca Raton, FL

    Google Scholar 

  3. Sharma S, Chandra R, Kumar P, Kumar N (2014) Effect of Stone-Wales and vacancy defects on elastic moduli of carbon nanotubes and their composites using molecular dynamics simulation. Comp Mater Sci 86:1–8. https://doi.org/10.1016/j.commatsci.2014.01.035

    Article  CAS  Google Scholar 

  4. Sharma S, Chandra R, Kumar P, Kumar N (2016) Mechanical properties of carbon nanofiber reinforced polymer composites-molecular dynamics approach. JOM 68:1717–1727. https://doi.org/10.1007/s11837-016-1933-y

    Article  CAS  Google Scholar 

  5. Sharma S, Kumar P, Chandra R (2016) Graphene/carbon nanotube reinforced metallic glass composites: a molecular dynamics study. Int J Multiscale Comput Eng 14:555–584. https://doi.org/10.1615/IntJMultCompEng.2016018635

    Article  Google Scholar 

  6. Ajori S, Parsapour H, Ansari R, Ameri A (2019) Buckling behavior of various metallic glass nanocomposites reinforced by carbon nanotube and Cu nanowire: a molecular dynamics simulation study. Mater Res Express 6:095070. https://doi.org/10.1088/2053-1591/ab2cfd

    Article  CAS  Google Scholar 

  7. Ajori S, Parsapour H, Ansari R (2020) A comprehensive analysis of the mechanical properties and fracture analysis of metallic glass nanocomposites reinforced by carbon nanotubes and Cu nanowires: a molecular dynamics study, Mech. Adv. Mater. Struct. 1-20https://doi.org/10.1080/15376494.2020.1746447

  8. Yi J, Seifi SM, Wang W, Lewandowski JJ (2014) A damage-tolerant bulk metallic glass at liquid-nitrogen temperature. J Mater Sci Technol 30:627–630. https://doi.org/10.1016/j.jmst.2014.04.017

    Article  CAS  Google Scholar 

  9. Fan C, Li H, Kecskes LJ, Tao K, Choo H, Liaw PK, Liu CT (2006) Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures. Phys Rev Lett 96:145506. https://doi.org/10.1103/PhysRevLett.96.145506

    Article  CAS  PubMed  Google Scholar 

  10. Stolyarov VV, Valiev RZ, Zhu YT (2006) Enhanced low-temperature impact toughness of nanostructured Ti. Appl Phys Lett 88:041905. https://doi.org/10.1063/1.2167800

    Article  CAS  Google Scholar 

  11. Pan D, Guo H, Zhang W, Inoue A, Chen MW (2011) Temperature-induced anomalous brittle-to-ductile transition of bulk metallic glasses. Appl Phys Lett 99:241907. https://doi.org/10.1063/1.3669508

    Article  CAS  Google Scholar 

  12. Yoon KS, Lee M, Fleury E, Lee JC (2010) Cryogenic temperature plasticity of a bulk amorphous alloy. Acta Mater 58:5295–5304. https://doi.org/10.1016/j.actamat.2010.06.002

    Article  CAS  Google Scholar 

  13. Torre FHD, Klaumünzer D, Maaß R, Löffler JF (2010) Stick–slip behavior of serrated flow during inhomogeneous deformation of bulk metallic glasses. Acta Mater 58:3742–3750. https://doi.org/10.1016/j.actamat.2010.03.011

    Article  CAS  Google Scholar 

  14. Sun BA, Pauly S, Hu J, Wang WH, Kühn U, Eckert J (2013) Origin of intermittent plastic flow and instability of shear band sliding in bulk metallic glasses. Phys Rev Lett 110:225501. https://doi.org/10.1103/PhysRevLett.110.225501

    Article  CAS  PubMed  Google Scholar 

  15. Griner S, Babilas R, Nowosielski R (2012) Structure and properties changes of Fe78Si9B13 metallic glass by low temperature thermal activation process. J. Achiev. Mater. Manuf. Eng. 50(18):25 (http://jamme.acmsse.h2.pl/papers_vol50_1/5012.pdf)

    Google Scholar 

  16. Lesz S (2017) Effect of cooling rates on the structure, density and micro-indentation behavior of the Fe, Co-based bulk metallic glass. Mater Charac 124:97–106. https://doi.org/10.1016/j.matchar.2016.12.016

    Article  CAS  Google Scholar 

  17. Dong C, Wang Q, Qiang JB, Wang YM, Jiang N, Han G, Li YH, Wu J, Xia JH (2007) From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses. J Phys D: Appl Phys 40:R273–R291. https://doi.org/10.1088/0022-3727/40/15/R01

    Article  CAS  Google Scholar 

  18. Antonowicz J, Pietnoczka A, Drobiazg T, Almyras GA, Papageorgiou DG, Evangelakis GA (2012) Icosahedral order in Cu-Zr amorphous alloys studied by means of X-ray absorption fine structure and molecular dynamics simulations. Philos Mag 92:1865–1875. https://doi.org/10.1080/14786435.2012.659008

    Article  CAS  Google Scholar 

  19. Wang CC, Wong CH (2012) Interpenetrating networks in Zr-Cu-Al and Zr-Cu metallic glasses. Intermetallics 22:13–16. https://doi.org/10.1016/j.intermet.2011.10.022

    Article  CAS  Google Scholar 

  20. Cheng YQ, Ma E (2008) Indicators of internal structural states for metallic glasses: local order, free volume, and configurational potential energy. Appl Phys Lett 93:051910. https://doi.org/10.1063/1.2966154

    Article  CAS  Google Scholar 

  21. Cheng YQ, Sheng HW, Ma E (2008) Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys Rev B 78:014207. https://doi.org/10.1103/PhysRevB.78.014207

    Article  CAS  Google Scholar 

  22. Dutta A (2018) Surface damage of CuZr metallic glass by hypervelocity nano-projectile: a molecular dynamics study. Comput Mater Sci 141:41–48. https://doi.org/10.1016/j.commatsci.2017.09.019

    Article  CAS  Google Scholar 

  23. Sun P, Peng C, Cheng Y, Zhang G, Wang P, Jia L, Wang L (2019) Mechanical behavior of CuZr dual-phase nanocrystal-metallic glass composites. Comput Mater Sci 163:290–300. https://doi.org/10.1016/j.commatsci.2019.03.046

    Article  CAS  Google Scholar 

  24. Amigo N, Urbina F, Valencia F (2020) Shear transformation zones structure characterization in Cu50Zr50 metallic glasses under tensile test. Comput Mater Sci 184:109941. https://doi.org/10.1016/j.commatsci.2020.109941

    Article  CAS  Google Scholar 

  25. Wang P, Yang X (2020) Atomistic investigation of aging and rejuvenation in CuZr metallic glass under cyclic loading. Comput Mater Sci 185:109965. https://doi.org/10.1016/j.commatsci.2020.109965

    Article  CAS  Google Scholar 

  26. Wu Y, Wang H, Wu HH, Zhang ZY, Hui XD, Chen GL, Ma D, Wang XL, Lu ZP (2011) Formation of Cu–Zr–Al bulk metallic glass composites with improved tensile properties. Acta Mater 59:2928–2936. https://doi.org/10.1016/j.actamat.2011.01.029

    Article  CAS  Google Scholar 

  27. Liu Z, Li R, Liu G, Su WH, Wang H, Li Y, Shi MJ, Luo XK (2012) Microstructural tailoring and improvement of mechanical properties in CuZr-based bulk metallic glass composites. Acta Mater 60:3128–3139. https://doi.org/10.1016/j.actamat.2012.02.017

    Article  CAS  Google Scholar 

  28. Ding J, Liu Z, Wang H, Zhang T (2014) Large-sized CuZr-based bulk metallic glass composite with enhanced mechanical properties. J Mater Sci Technol 30:590–594. https://doi.org/10.1016/j.jmst.2014.01.014

    Article  CAS  Google Scholar 

  29. Li F, Liu XJ, Lu ZP (2014) Atomic structural evolution during glass formation of a Cu–Zr binary metallic glass. Comput Mater Sci 85:147–153. https://doi.org/10.1016/j.commatsci.2013.12.058

    Article  CAS  Google Scholar 

  30. Ward L, Miracle D, Wind W, Senkov ON, Flores K (2013) Structural evolution and kinetics in Cu-Zr metallic liquids from molecular dynamics simulations. Phys Rev B 88:134205. https://doi.org/10.1103/PhysRevB.88.134205

    Article  CAS  Google Scholar 

  31. Kluge M, Schober HR (2004) Diffusion and jump-length distribution in liquid and amorphous Cu33Zr67. Phys Rev B 70:224209. https://doi.org/10.1103/PhysRevB.70.224209

    Article  CAS  Google Scholar 

  32. Kluge M, Schober HR (2006) Diffusion in a binary amorphous metal: Pair-correlation in Cu33Zr67. J Non-Cryst Solids 352:5093–5097. https://doi.org/10.1016/j.jnoncrysol.2006.01.155

    Article  CAS  Google Scholar 

  33. Han XJ, Schober HR (2011) Transport properties and Stokes-Einstein relation in a computer-simulated glass-forming Cu33.3Zr66.7 melt. Phys Rev B 83:224201. https://doi.org/10.1103/PhysRevB.83.224201

    Article  CAS  Google Scholar 

  34. Liu XJ, Wang SD, Fan HY, Ye YF, Wang H, Wu Y, Lu ZP (2018) Static atomic-scale structural heterogeneity and its effects on glass formation and dynamics of metallic glasses. Intermetallics 101:133–143. https://doi.org/10.1016/j.intermet.2018.08.001

    Article  CAS  Google Scholar 

  35. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–119. https://doi.org/10.1006/jcph.1995.1039

    Article  CAS  Google Scholar 

  36. Mendelev MI, Kramer MJ, Ott RT, Sordelet DJ, Yagodin D, Popel P (2009) Development of suitable interatomic potentials for simulation of liquid and amorphous Cu–Zr alloys. Philos Mag 89:967–987. https://doi.org/10.1080/14786430902832773

    Article  CAS  Google Scholar 

  37. Li F, Zhang H, Liu X, Yu C, Lu Z (2018) Effects of cooling rate on the atomic structure of Cu64Zr36 binary metallic glass. Comp Mater Sci 141:59–67. https://doi.org/10.1016/j.commatsci.2017.09.026

    Article  CAS  Google Scholar 

  38. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643. https://doi.org/10.1063/1.463940

    Article  Google Scholar 

  39. Reddy KV, Pal S (2019) Evaluation of glass forming ability of Zr–Nb alloy systems through liquid fragility and Voronoi cluster analysis. Comput Mater Sci 158:324–332. https://doi.org/10.1016/j.commatsci.2018.11.045

    Article  CAS  Google Scholar 

  40. Pan SP, Feng SD, Qiao JW, Wang WM, Qin JY (2016) Correlation between local structure and dynamic heterogeneity in a metallic glass-forming liquid. J Alloys Compd 664:65–70. https://doi.org/10.1016/j.jallcom.2015.12.223

    Article  CAS  Google Scholar 

  41. Zhang K, Li H, Li L, Bian XF (2013) Why does the second peak of pair correlation functions split in quasi-two-dimensional disordered films? Appl Phys Lett 102:071907. https://doi.org/10.1063/1.4793187

    Article  CAS  Google Scholar 

  42. Wu ZW, Li MZ, Wang WH, Liu KX (2015) Hidden topological order and its correlation with glass-forming ability in metallic glasses. Nat Commun 6:6035. https://doi.org/10.1038/ncomms7035

    Article  CAS  PubMed  Google Scholar 

  43. Sun YL, Shen J, Valladares AA (2009) Atomic structure and diffusion in Cu60Zr40 metallic liquid and glass: molecular dynamics simulations. J Appl Phys 106:073520. https://doi.org/10.1063/1.3245324

    Article  CAS  Google Scholar 

  44. Sheng G, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int 21:433–446. https://doi.org/10.1016/S1002-0071(12)60080-X

    Article  Google Scholar 

  45. Wang J, Hodgson PD, Zhang J, Yan W, Yang C (2009) Effects of quenching rate on amorphous structures of Cu46Zr54 metallic glass. J Mater Process Technol 209:4601–4606. https://doi.org/10.1016/j.jmatprotec.2008.10.048

    Article  CAS  Google Scholar 

  46. Dalgic SS, Celtek M (2011) Liquid-to-glass transition in bulk glass-forming Cu55-xZr45Agx alloys using molecular dynamic simulations. EPJ Web of Conferences 15:03009. https://doi.org/10.1051/epjconf/20111503009

    Article  CAS  Google Scholar 

  47. Lindwall J (2019) Modelling of bulk metallic glass formation in powder bed fusion. Licentiate Thesis. Lulea University of Technology, Lulea, Sweden

  48. Lu Y, Zhang H, Li H, Xu H, Huang G, Qin Z, Lu X (2017) Crystallization prediction on laser three-dimensional printing of Zr-based bulk metallic glass. J Non-Cryst Solids 46:12–17. https://doi.org/10.1016/j.jnoncrysol.2017.01.038

    Article  CAS  Google Scholar 

  49. Schroers J, Masuhr A, Johnson WL, Busch R (1999) Pronounced asymmetry in the crystallization behavior during constant heating and cooling of a bulk metallic glass-forming liquid. Phy Rev B 60:11855. https://doi.org/10.1103/PhysRevB.60.11855

    Article  CAS  Google Scholar 

  50. Li F, Liu XJ, Hou HY, Chen G, Chen GL (2011) Atomic-scale structural evolution from disorder to order in an amorphous metal. J Appl Phys 110:123508. https://doi.org/10.1063/1.3669450

    Article  CAS  Google Scholar 

  51. Durandurdu M (2012) Ab initio modeling of metallic Pd80Si20 glass. Comput Mater Sci 65:44–47. https://doi.org/10.1016/j.commatsci.2012.06.040

    Article  CAS  Google Scholar 

  52. Finney JL (1970) Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc R Soc A 319:479–493. https://doi.org/10.1098/rspa.1970.0189

    Article  CAS  Google Scholar 

  53. Bernal JD, Finney JL (1967) Random packing of spheres in non-rigid containers. Nature 214:265–266. https://doi.org/10.1038/214265a0

    Article  Google Scholar 

  54. Meraj Md, Pal S (2016) The effect of temperature on creep behaviour of porous (1at.%) nano crystalline nickel. Trans Indian Inst Met 69:277–282. https://doi.org/10.1007/s12666-015-0763-x

    Article  Google Scholar 

  55. Lou H, Wang X, Cao Q, Zhang D, Zhang J, Hu T, Mao H, Jiang JZ (2013) Negative expansions of interatomic distances in metallic melts. PNAS 110:10068–10072. https://doi.org/10.1073/pnas.1307967110

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gangopadhyay AK, Blodgett ME, Johnson ML, Knight JM, Wessels V, Vogt AJ, Mauro NA, Bendert JC, Soklaski R, Yang L, Kelton KF (2014) Anomalous thermal contraction of the first coordination shell in metallic alloy liquids. J Chem Phys 140:044505. https://doi.org/10.1063/1.4861666

    Article  CAS  PubMed  Google Scholar 

  57. Kittel C (1996) Introduction to solid state physics, 2nd edn. JohnWiley and Sons, New York

    Google Scholar 

  58. Liu XJ, Xu Y, Hui X, Lu ZP, Li F, Chen GL, Lu J, Liu CT (2010) Metallic liquids and glasses: atomic order and global packing. Phys Rev Lett 105:155501. https://doi.org/10.1103/PhysRevLett.105.155501

    Article  CAS  PubMed  Google Scholar 

  59. Matsuura M, Sakurai M, Zhang W, Inoue A (2007) Local structures around Zr, Ni and Cu for the Zr67Cu33 and Zr67Ni33 metallic gasses. Mater Sci Forum 539–543:1959–1963. https://doi.org/10.4028/www.scientific.net/MSF.539-543.1959

    Article  Google Scholar 

  60. Colín JG, Valladares AA, Valladares RM, Valladares A (2015) Short-range order in ab initio computer generated amorphous and liquid Cu–Zr alloys: a new approach. Physica B: Cond Matter 475:140–147. https://doi.org/10.1016/j.physb.2015.07.027

    Article  CAS  Google Scholar 

  61. Foroughi A, Tavakoli R, Aashuri H (2016) Molecular dynamics study of structural formation in Cu50Zr50 bulk metallic glass. J Non-Cry Solids 432:334–341. https://doi.org/10.1016/j.jnoncrysol.2015.10.028

    Article  CAS  Google Scholar 

  62. Mattern N, Jóvári P, Kaban I, Gruner S, Elsner A, Kokotin V, Franz H, Beuneu B, Eckert J (2009) Short-range order of Cu–Zr metallic glasses. J Alloys Compd 485:163–169. https://doi.org/10.1016/j.jallcom.2009.05.111

    Article  CAS  Google Scholar 

  63. Wang Y, Yao J, Li Y (2018) Glass formation adjacent to the intermetallic compounds in Cu-Zr binary system. J Mater Sci Tech 34:605–612. https://doi.org/10.1016/j.jmst.2017.09.008

    Article  Google Scholar 

  64. Sikan F (2017) Production and characterization of CuZr‒RE based bulk amorphous/nanocrystal composite. Master’s Thesis, Middle East Technical University

  65. Baker H, Okamoto H (1992) ASM Handbook, Volume 03‒ Alloy Phase Diagrams. ASM International

  66. Wu SY, Wei SH, Guo GQ, Wang JG, Yang L (2016) Structural mechanism of the enhanced glass-forming ability in multicomponent alloys with positive heat of mixing. Sci Rep 6:38098. https://doi.org/10.1038/srep38098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Luo WK, Sheng HW, Alamgir FM, Bai JM, He JH, Ma E (2004) Icosahedral short-range order in amorphous alloys. Phys Rev Lett 92:145502. https://doi.org/10.1103/PhysRevLett.92.145502

    Article  CAS  PubMed  Google Scholar 

  68. Sheng HW, Luo WK, Alamgir FM, Bai JM, Ma E (2006) Atomic packing and short-to-medium range order in metallic glasses. Nature 439:419–425. https://doi.org/10.1038/nature04421

    Article  CAS  PubMed  Google Scholar 

  69. Hwang J (2011) Nanometer Scale atomic structure of zirconium based bulk metallic glasses, Ph.D. Thesis. University of Wisconsin–Madison

  70. Wang T, Zhang F, Yang L, Fang XW, Zhou SH, Kramer MJ, Wang CZ, Ho KM, Napolitano RE (2015) A computational study of diffusion in a glass-forming metallic liquid. Sci Rep 5:10956. https://doi.org/10.1038/srep10956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun Y, Zhang F, Ye Z, Fang X, Ding Z, Wang CZ, Mendelev MI, Ott RT, Kramer MJ, Ho KM (2014) Crystalline ‘Genes’ in Metallic Liquids. ArXiv e-prints 1714

  72. Wei D, Yang J, Jiang MQ, Dai LH, Wang YJ, Dyre JC, Douglass I, Harrowell P (2019) Assessing the utility of structure in amorphous materials. J Chem Phys 150:114502. https://doi.org/10.1063/1.5064531

    Article  CAS  PubMed  Google Scholar 

  73. Hill MO (1973) Diversity and evenness: a unifying notation and its consequences. Ecology 54:427–432. https://doi.org/10.2307/1934352

    Article  Google Scholar 

Download references

Acknowledgements

Authors (A. A. Deshmukh, S. Pal) are thankful to the Department of Metallurgical and Materials Engineering, National Institute of Technology Rourkela, for providing the high-performance computational facilities to carry out these computational simulations.

Author information

Authors and Affiliations

Authors

Contributions

All the authors are actively involved in conceptualization; data curation; formal analysis; investigation; methodology; resources; software; supervision; validation; visualization; writing—original manuscript draft; and writing—review and editing.

Corresponding author

Correspondence to Akash A. Deshmukh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, A.A., Bhatt, J.G., Gade, P.M. et al. Investigation of structural evolution in the Cu–Zr metallic glass at cryogenic temperatures by using molecular dynamics simulations. J Mol Model 27, 286 (2021). https://doi.org/10.1007/s00894-021-04886-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04886-y

Keywords

Navigation