Skip to main content
Log in

Computational investigation, comparative approaches, molecular structural, vibrational spectral, non-covalent interaction (NCI), and electron excitations analysis of benzodiazepine derivatives

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present work explores the structural parameters and vibrational frequencies as well as molecular interactions of benzodiazepine derivatives, such as clothiapine (CT), clozapine (CZ), and loxapine (LX). Employing fitting experimental data to theoretical results is used to assess the structural parameters of heading composites. The main assignment is passed out according to the overall distribution of energy of the vibrational modes. From the hyper-conjugative interaction, the permanency of the structure had been predicted through natural bond orbital analysis; it is also used to identify the bonding and antibonding regions of the molecules. Moreover, electrostatic potential (ESP), density of states (DOS), and charge transfer occurring of the molecule among HOMO as well as LUMO energy were calculated and presented; utilizing electron localized field (ELF), localized orbital locator (LOL), and reduced density gradient (RDG), the chemical interactive regions are found. Additionally, mean polarizability (αtot), the first-order hyperpolarizability (βtot), and softness and hardness of the entitled compounds were also performed. The interaction between protein–ligand was also predicted by docking studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of data and material

NA.

Code availability

NA.

References

  1. Dourlat J, Liu WQ,  Gresh N, Garbay C, Novel (2007) Med Chem Lett 17:2527–2530

  2. Brodin T, Fick J, Jonsson M, Klaminder (2013) Science 339:814–815

    Article  CAS  PubMed  Google Scholar 

  3. Dong Z, Senn DB, Moran RE (2013) Shine Regul Toxicol Pharmacol 65:60–67

    Article  CAS  PubMed  Google Scholar 

  4. De Almeida CA, Brenner CGB, Minetto L, Mallmann CA, Martins AF (2013) Chemosphere 93:2349–2355

    Article  PubMed  CAS  Google Scholar 

  5. Fent K, Weston AA (2006) Caminada. Aquat Toxicol 76:122–159

    Article  CAS  PubMed  Google Scholar 

  6. Calisto V, Esteves VI (2009) Chemosphere 77:1257–1274

    Article  CAS  PubMed  Google Scholar 

  7. Kosjek T, Perko S, Zupanc M, Zanoški Hren M, Dragicevic TL, Žigon D, Kompare B (2012) Water Res 46:355–368

    Article  CAS  PubMed  Google Scholar 

  8. Huerta-Fontela M, Galceran MT (2010) J Chromatogr A 1217:4212–4222

    Article  CAS  PubMed  Google Scholar 

  9. Baker DR, Kasprzyk-Hordern B (2013) Sci Total Environ 454–455:442–456

    Article  PubMed  CAS  Google Scholar 

  10. Mendoza A (2014) López de Alda M, González-Alonso S, Mastroianni N, Barceló D, Valcárcel Y. Chemosphere 95:247–255

    Article  CAS  PubMed  Google Scholar 

  11. Chi Q, Dong S (1994) Anal Chim Acta 285(1–2):125–133

    Article  CAS  Google Scholar 

  12. Karyakin AA, Karyakina EE, Schuhmann W (1999) Electroanalysis 11(8):553–557

    Article  CAS  Google Scholar 

  13. Sokic-Lazic D, Minteer SD (2008) Biosens Bioelectron 24(4):939–944

    Article  CAS  Google Scholar 

  14. McDowell JJH (1976) Acta Crystall Sect B 32:5

    Article  Google Scholar 

  15. Levy LB (1992) J Polym Sci A Polym Chem 30(4):569–576

    Article  CAS  Google Scholar 

  16. Ohlow MJ (2011) B. Drug Discov Today 16(3–4):119–131

    Article  CAS  PubMed  Google Scholar 

  17. Jaszczyszyn A et al (2012) Pharmacol Rep 64(1):16–23

    Article  CAS  PubMed  Google Scholar 

  18. Dordio AV, Candeias AJE, Pinto AP, da Costa CT (2009) Ecol Eng 35:290–302

    Article  Google Scholar 

  19. Sevvanthi S, Muthu S, Aayisha S, Ramesh P, Raja MJ (2020) Chem Data Collect 30:10

    Article  CAS  Google Scholar 

  20. S. Muthu, M. Prasath, R. Arun Balaji, J. Uma Maheswari International Journal of engineering TomeX 3 (2012) 1584–2673.

  21. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2010) Gaussian 09, Revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  22. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc., Shawnee Mission

    Google Scholar 

  23. Jomroz MH. Vibrational Energy Distribution Analysis, VEDA4, 2004 -2010.

  24. Merrick JP, Moran JD, Radom L (2007) The J Phy Chem A 111:11683–11700

    Article  CAS  Google Scholar 

  25. O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839–845

    Article  PubMed  CAS  Google Scholar 

  26. Tian Lu, Chen F (2012) J Comput Chem 33:580–592

    Article  CAS  Google Scholar 

  27. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJJ (2009) Comput Chem 16:2785–2791

    Article  CAS  Google Scholar 

  28. Ravikumar K (2005) Balasubramanian. Sridhar, Quetiapine hemifumarate, Acta Crystallographica Section E 61:o3245–o3248

    Article  CAS  Google Scholar 

  29. Verma V, Bannigan P, Lusi M, Crowley CM, Hudson S, Hodnett BK, Davern P (2018) CrystEngComm 20(31):4370–4382

    Article  CAS  Google Scholar 

  30. Bhardwaj RM, Johnston BF, Oswald IDH, Florence AJ (2013) Acta Crystallogr Sect C Cryst Struct Commun 69(11):1273–1278

    Article  CAS  Google Scholar 

  31. John Wiley & Sons, Inc. SpectraBase; https://spectrabase.com/ (accessed 1/5/2021)

  32. Sylaja B, Gunasekaran S, Srinivasan S (2017) Mater Res Innov 22(4):187–199

    Article  CAS  Google Scholar 

  33. Muthu S, Prasath M, Balaji RA (2013) Spectrochim Acta 106:129–145

    Article  CAS  Google Scholar 

  34. Alsalme A, Pooventhiran T, Al-Zaqri N, Rao DJ, Rao SS, Thomas R (2020) J Mol Model 26:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Muthu S, Uma Maheswari J (2012) Acta Part A 92:154–163

    Article  CAS  Google Scholar 

  36. Alsalme A, Pooventhiran T, Al-Zaqri N, Rao DJ, Thomas RJ (2020) Mol Liq 114555

  37. Ullah Z, Thomas R (2021) Appl Organomet Chem e6077

  38. Mary YS, Miniyar PB, Mary YS, Resmi KS, Panicker CY, Armakovic S, Armakovic SJ, Thomas R, Surehskumar B (2018) J Mol Struct 1173:469–480

    Article  CAS  Google Scholar 

  39. Sureshkumar B, Mary YS, Resmi KS, Panicker CY, Armakovic S, Armakovic SJ, Van Alsenoy C, Narayana B, Suma S (2018) J Mol Struct 1156:336–347

    Article  CAS  Google Scholar 

  40. Reed AE, Curtiss LA, Weinhold F (1988) J Chem 88:899–926

    CAS  Google Scholar 

  41. Mulliken RS (1995) J Chem Phys 23:1833–1840

    Article  Google Scholar 

  42. Sun YX, Hao QL, Wei WX, Yu ZX, Lu LD, Wang X, Wang YS (2009) J Mol Struct: THEOCHEM 904:74–82

    Article  CAS  Google Scholar 

  43. Zhang R, Du B, Sun G, Sun YX (2010) Spectrochim Acta A 75:1115–1124

    Article  CAS  Google Scholar 

  44. Kleinman DA (1962) Nonlinear dielectric polarization in optical media. J Phys 126:1977–1979

    CAS  Google Scholar 

  45. Matondo A, Thomas R, Tsalu PV, Mukeba CT, Mudogo V (2019) J Mol Graph Model 88:237–246

    Article  CAS  PubMed  Google Scholar 

  46. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, New York

    Google Scholar 

  47. Parr R, Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  48. Pooventhiran T, Bhattacharyya U, Rao DJ, Chandramohan V, Karunakar P, Irfan A, Mary YS, Thomas R (2020) Struct Chem

  49. Koopmans TA (1934) Physica 1:104–113

    Article  Google Scholar 

  50. Prabakaran A, Muthu S (2014) Spectrochim Acta A Mol Biomol Spectrosc 118:578–588

    Article  CAS  PubMed  Google Scholar 

  51. Fathima Rizwana B (2019) Johanan Christian Prasana, S. Muthu, Christina Susan Abraham Materials Today: Proceedings 18:1770–1782

    CAS  Google Scholar 

  52. Schmider HL, Becke AD (2000) J Mol Struct (THEOCHEM) 51:527

    Google Scholar 

  53. Poater J, Duran M, Sola M, Silvi B (2005) Chem Rev 105:3911–3947

    Article  CAS  PubMed  Google Scholar 

  54. Schmider HL, Becke AD (2002) J Chem Phys 116:3184

    Article  CAS  Google Scholar 

  55. Jacobsen H (2008) Can J Chem 86:695–702

    Article  CAS  Google Scholar 

  56. Jacobsen H (2009) Can J Chem 87:695–973

    Article  CAS  Google Scholar 

  57. Wu P, Chaudret R, Hu X, Yang W (2013) J Chem Theory Comput 9:2226–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Contreras-García J, Boto RA, Izquierdo-Ruiz F, Reva I, Woller T, Alonso M (2016) Theor Chem Accounts 135–242

  59. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  60. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal J-P, Beratan DN, YangW, (2011) J Chem Theory Comput 7:625–632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Lu T, Chen F (2012) J Mol Graph Model 38:314–323

    Article  PubMed  CAS  Google Scholar 

  62. Hu Y, Xu X, Jiang Y, Zhang G, Li W, Sun X, Tian WQ, Feng Y (2018) Chem Phys 20:12618–12623

    CAS  Google Scholar 

  63. Lipinski CA (2004) Drug Discov Today Technol 1(4):337–341

    Article  CAS  PubMed  Google Scholar 

  64. Daina A, Zoete V (2016) A BOILED-Egg Chem Med Chem 11:1117–1121

    Article  CAS  PubMed  Google Scholar 

  65. Potts RO, Guy RH (1992) Pharm Res 9:663–669

    Article  CAS  PubMed  Google Scholar 

  66. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) J Comb Chem 1(1):55–68

    Article  CAS  PubMed  Google Scholar 

  67. Ertl P, Rohde B, Selzer P (2000) Fast J Med Chem 43:3714–3717

    Article  CAS  PubMed  Google Scholar 

  68. Filimonov DA, Lagunin AA, Gloriozova TA, Rudik AV, Druzhilovskii DS, Pogodin PV, Poroikov VV (2014) Chem Heterocycl Compd 50(3):444–457

    Article  CAS  Google Scholar 

  69. Wang S, Che T, Levit A, Shoichet BK, Wacker D, Roth BL (2018) Nature 555:269–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We extend our appreciation to the Deanship of Scientific Research at King Khalid University (KKU), Saudi Arabia, for funding through research groups program under grant number R.G.P.1/110/42

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S. Sarala; methodology: S. Sarala, S.K.Geetha; formal analysis and investigation: S. Muthu, Ahmad Irfan; writing—original draft, preparation: S. Sarala; writing—review and editing: S. Muthu; funding acquisition: – NA; resources: S.K. Geetha, Ahmad Irfan; supervision: S. Muthu

Corresponding authors

Correspondence to S. K. Geetha or S. Muthu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarala, S., Geetha, S.K., Muthu, S. et al. Computational investigation, comparative approaches, molecular structural, vibrational spectral, non-covalent interaction (NCI), and electron excitations analysis of benzodiazepine derivatives. J Mol Model 27, 266 (2021). https://doi.org/10.1007/s00894-021-04877-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04877-z

Keywords

Navigation