Skip to main content

Advertisement

Log in

Exploring the ring potential of 2,4-diaminopyrimidine derivatives towards the identification of novel caspase-1 inhibitors in Alzheimer’s disease therapy

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Pro-inflammatory activation of caspase-1 in the neurodegenerative pathway has been associated with age-dependent cognitive impairment and Alzheimer’s disease (AD) in humans. A recent report highlighted 2,4-diaminopyrimidine ring as an essential fragment in the inhibition of human caspase-1. However, the role of the ring and its enzyme inhibitory mechanism is not thoroughly investigated at the molecular level. The purpose of this study is therefore in twofold: (1) to understand the enzyme binding mechanism of the 2,4-diaminopyrimidine ring and (2) to search for more potent caspase-1 inhibitors that contain the ring, using integrative per-residue energy decomposition (PRED) pharmacophore modeling. Ligand interaction profile of a reference compound revealed a peculiar hydrogen formation of the amino group of 2,4-diaminopyrimidine with active site residue Arg341, possibly forming the bases for its inhibitory prowess against caspase-1. A generated pharmacophore model for structure-based virtual screening identified compounds, ZINC724667, ZINC09908119, and ZINC09933770, as potential caspase-1 inhibitors that possessed desirable pharmacokinetic and physiochemical properties. Further analyses revealed active site residues, Arg179, Ser236, Cys285, Gln283, Ser339, and Arg341, as crucial to inhibitor binding by stabilizing and forming hydrogen bonds, hydrophobic, and pi-pi interactions with the 2,4-diaminopyrimidine rings. Common interaction patterns of the hits could have accounted for their selective and high-affinity ligand binding, which was characterized by notable disruptions in caspase-1 structural architecture. These compounds could further be explored as potential leads in the development of novel caspase-1 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumar A, Singh A, Ekavali (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep Inst Pharmacol Pol Acad Sci 67:195–203

  2. Iadecola C (2017) The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron Elsevier Inc 96:17–42

    CAS  Google Scholar 

  3. Kametani F, Hasegawa M (2018) Reconsideration of amyloid hypothesis and tau hypothesis in Alzheimer’s disease. Front Neurosci 12:25

    PubMed  PubMed Central  Google Scholar 

  4. Pontillo A, Catamo E, Arosio B, Mari D, Crovella S (2012) NALP1/NLRP1 genetic variants are associated with Alzheimer disease. Alzheimer Dis Assoc Disord 26:277–281

    CAS  PubMed  Google Scholar 

  5. Salminen A, Ojala J, Suuronen T, Kaarniranta K, Kauppinen A (2008) Amyloid-β oligomers set fire to inflammasomes and induce Alzheimer’s pathology: Alzheimer review series. J Cell Mol Med 12:2255–2262

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cline EN, Bicca MA, Viola KL, Klein WL (2018) The amyloid-β oligomer hypothesis: beginning of the third decade. J Alzheimers Dis 64:S567–S610

    CAS  PubMed  PubMed Central  Google Scholar 

  7. MacKenzie SH, Schipper JL, Clark AC (2010) The potential for caspases in drug discovery. Curr Opin Drug Discov Dev 13:568–576

    CAS  Google Scholar 

  8. Howley B, Fearnhead HO (2008) Caspases as therapeutic targets. J Cell Mol Med 12:1502–1516

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mcilwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5:a008656

  10. Patel S, Modi P, Ranjan V, Chhabria M (2018) Structure-based design, synthesis and evaluation of 2,4-diaminopyrimidine derivatives as novel caspase-1 inhibitors. Bioorg Chem Elsevier Inc 78:258–268

    CAS  Google Scholar 

  11. Rudolphi K, Gerwin N, Verzijl N, van der Kraan P, van den Berg W (2003) Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthr Cartil 11:738–746

    CAS  Google Scholar 

  12. Talanian R V, Allen HJ (1998) Chapter 27 - Roles of caspases in inflammation and apoptosis: prospects as drug discovery targets. Annu Rep Med Chem 33:273–82

  13. Behzadi P, Ranjbar R (2015) Caspases and apoptosis. Mol Enzymol Drug Targets 1:6

  14. Chavarría-Smith J, Vance RE (2015) The NLRP1 inflammasomes. Immunol Rev 265:22–34

    PubMed  Google Scholar 

  15. Boxer MB, Quinn AM, Shen M, Jadhav A, Leister W, Simeonov A et al (2010) A highly potent and selective caspase 1 inhibitor that utilizes a key 3-cyanopropanoic acid moiety. ChemMedChem 5:730–738

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Brough D, Rothwell NJ (2007) Caspase-1-dependent processing of pro-interleukin-1beta is cytosolic and precedes cell death. J Cell Sci 120:772–781

    CAS  PubMed  Google Scholar 

  17. Flores J, Noël A, Foveau B, Lynham J, Lecrux C, LeBlanc AC (2018) Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat Commun Springer US 9:3916

    Google Scholar 

  18. Poreba M, Strózyk A, Salvesen GS, Drag M (2013) Caspase substrates and inhibitors. Cold Spring Harb Perspect Biol 5:1–20

    Google Scholar 

  19. Mohamed T, Yeung JCK, Vasefi MS, Beazely MA, Rao PPN (2012) Development and evaluation of multifunctional agents for potential treatment of Alzheimer’s disease: application to a pyrimidine-2,4-diamine template. Bioorg Med Chem Lett 22:4707–4712

    CAS  PubMed  Google Scholar 

  20. Yang J, Liu Z, Wang C, Yang R, Rathkey JK, Pinkard OW et al (2018) Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proc Natl Acad Sci U S A 115:6792–6797

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2013) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Google Scholar 

  22. ChemAxon. Marvin Sketch. Available from: https://www.chemaxon.com/products/marvin/. Accessed 7 Feb 2020

  23. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213

    CAS  PubMed  Google Scholar 

  25. Yang Z, Lasker K, Schneidman-Duhovny D, Webb B, Huang CC, Pettersen EF et al (2012) UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J Struct Biol 179:269–278

    CAS  PubMed  Google Scholar 

  26. Koes DR, Camacho CJ (2012) ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Res 40:W409–W414

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lipinski CA (2016) Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv Drug Deliv Rev 101:34–41

    CAS  PubMed  Google Scholar 

  28. Waszkowycz B, Perkins TDJ, Sykes RA, Li J (2001) Large-scale virtual screening for discovering leads in the postgenomic era. IBM Syst J 40:360–376

    Google Scholar 

  29. Hanwell MD, Curtis DE, Lonie DC, Vandermeerschd T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Aust J Chem 4:7

    Google Scholar 

  30. Sanner MF, Olson AJ, Spehner J (2002) Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38:305–320

    Google Scholar 

  31. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK et al (1998) AutoDock-related material automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    CAS  Google Scholar 

  32. Lawal M, Olotu FA, Soliman MES (2018) Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer’s disease using bioinformatics and computational tools. Comput Biol Med 98:168–177

    CAS  PubMed  Google Scholar 

  33. Agoni C, Ramharack P, Soliman M (2018) Co-inhibition as a strategic therapeutic approach to overcome rifampin resistance in tuberculosis therapy: atomistic insights. Future Med Chem 10:1665–1675. https://doi.org/10.4155/fmc-2017-0197

    Article  CAS  PubMed  Google Scholar 

  34. Agoni C, Ramharack P, Soliman MES (2018) Synergistic interplay of the co-administration of rifampin and newly developed anti-TB drug: could it be a promising new line of TB therapy? Comb Chem High Throughput Screen 21:453–460

  35. Olotu FA, Munsamy G, Soliman MES (2018) Does size really matter? Probing the efficacy of structural reduction in the optimization of bioderived compounds–a computational proof-of-concept. Comput Struct Biotechnol J 16:573–586

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Munsamy G, Agoni C, Soliman MES (2018) A dual target of plasmepsin IX and X: unveiling the atomistic superiority of a core chemical scaffold in malaria therapy. J Cell Biol:1–12 Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jcb.28062?af=R

  37. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM et al (2005) The Amber biomolecular simulation programs. J Comput Chem:1668–1688

  38. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Seifert E (2014) OriginPro 9.1: scientific data analysis and graphing software—software review. J Chem Inf Model 54:1552–1552

    CAS  PubMed  Google Scholar 

  40. Péronnet F, Mignault D, du Souich P, Vergne S, Le Bellego L, Jimenez L et al (2012) Pharmacokinetic analysis of absorption, distribution and disappearance of ingested water labeled with D2O in humans. Eur J Appl Physiol 112:2213–2222

    PubMed  Google Scholar 

  41. Geerts T, Vander Heyden Y (2011) In silico predictions of ADME-Tox properties: drug absorption. Comb Chem High Throughput Screen 14:339–361

    CAS  PubMed  Google Scholar 

  42. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep Nat Publ Group 7:1–13

    Google Scholar 

  43. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82

    CAS  PubMed  Google Scholar 

  44. Homeyer N, Gohlke H (2012) Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Mol Inform 31:114–122

    CAS  PubMed  Google Scholar 

  45. Abdullahi M, Olotu FA, Soliman ME (2018) Allosteric inhibition abrogates dysregulated LFA-1 activation: structural insight into mechanisms of diminished immunologic disease. Comput Biol Chem 73:49–56

    CAS  PubMed  Google Scholar 

  46. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel 8:127–134

    CAS  Google Scholar 

  47. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M (2015) PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res 43:W443–W447

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ndagi U, Mhlongo NN, Soliman ME (2017) The impact of Thr91 mutation on c-Src resistance to UM-164: molecular dynamics study revealed a new opportunity for drug design. Mol BioSyst 13:1157–1171 Available from: http://xlink.rsc.org/?DOI=C6MB00848H. Accessed 7 Feb 2020

  49. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    PubMed  PubMed Central  Google Scholar 

  50. Yamashita F, Hashida M (2004) In silico approaches for predicting ADME properties of drugs. Drug Metab Pharmacokinet 19:327–338

    CAS  PubMed  Google Scholar 

  51. Struck S, Schmidt U, Gruening B, Jaeger I, Hossbach J, Preissner R (2008) Toxicity versus potency: elucidation of toxicity properties discriminating between toxins, drugs, and natural compounds. Genome Inf 20:231–242

    Google Scholar 

  52. Veber D, Johnson S, Cheng H-Y, Smith B, Ward K, Kopple K (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    CAS  PubMed  Google Scholar 

  53. Daina A, Zoete V (2016) A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem:1117–1121

  54. Remko M (2009) Molecular structure, lipophilicity, solubility, absorption, and polar surface area of novel anticoagulant agents. J Mol Struct THEOCHEM 916:76–85

    CAS  Google Scholar 

  55. Remko M, Boháč A, Kováčiková L (2011) Molecular structure, pKa, lipophilicity, solubility, absorption, polar surface area, and blood brain barrier penetration of some antiangiogenic agents. Struct Chem 22:635–648

    CAS  Google Scholar 

  56. Lobanov MI, Bogatyreva NS, Galzitskaia OV (2008) Radius of gyration is indicator of compactness of protein structure. Mol Biol (Mosk) 42:701–706

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Center for High Computing Performance (CHPC) (www.chpc.ac.za), Cape Town, for the computational resources and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud E. S. Soliman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumi, R.O., Soremekun, O.S., Issahaku, A.R. et al. Exploring the ring potential of 2,4-diaminopyrimidine derivatives towards the identification of novel caspase-1 inhibitors in Alzheimer’s disease therapy. J Mol Model 26, 68 (2020). https://doi.org/10.1007/s00894-020-4319-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-4319-6

Keywords

Navigation