Skip to main content
Log in

Host-guest complexation studies of NO3, NO2, CO2, and N2 gas with the calix[4]arene molecule

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Calix[n]arenes (abbreviated as CX[n]) are the macro-molecules based on phenol groups with a hydrophobic cavity to encapsulate a gas or small molecules. They are used as molecular vehicles. For instance, these molecules are used in the activation of the solubility of monomers in the specific media and in pharmaceutical drug delivery. The limit of the development of gaseous pollutants will be a vital subject in the future. The polluting gases NO3, NO2, CO2, N2, etc., need cage molecules, such as CX[4], to be encapsulated. In this report, the red shift of the H-bonding interactions of the CX[4]-gas (by adding the gas inside or outside the cavity) is clearly explained by the vibrational analysis. The electronic spectra of the complexes of CX[4] with NO3, NO2, CO2, and N2) exhibit a blue-shift pick in comparison with the ones observed for the CX[4] molecule. The electrophilic and nucleophilic sites of the stable host-guest have been investigated. Additionally, the non-covalent interactions have been calculated based on the reduced density gradient RDG and QTAIM theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Athar M, Lone MY, Jha PC (2018) Recognition of anions using urea and thiourea substituted calixarenes: a density functional theory study of non-covalent interactions. Chem Phys 501:68–77. https://doi.org/10.1016/j.chemphys.2017.12.002

    Article  CAS  Google Scholar 

  2. Kumagai S, Hayashi K, Kameda T et al (2018) Identification of number and type of cations in water-soluble Cs+ and Na+ calix[4]arene-bis-crown-6 complexes by using ESI-TOF-MS. Chemosphere 197:181–184. https://doi.org/10.1016/j.chemosphere.2018.01.040

    Article  CAS  PubMed  Google Scholar 

  3. Arena G, Contino A, Gulino FG et al (2000) Complexation of small neutral organic molecules by water soluble calix[4]arenes. Tetrahedron Lett 41:9327–9330. https://doi.org/10.1016/S0040-4039(00)01687-7

    Article  CAS  Google Scholar 

  4. Ortolan A, Oestroem I, Caramori G et al (2018) Anion recognition by organometallic calixarenes: analysis from relativistic DFT calculations. Organometallics 37. https://doi.org/10.1021/acs.organomet.8b00292

  5. Erdemir S, Malkondu S, Kocyigit O (2019) A reversible calix[4]arene armed phenolphthalein based fluorescent probe for the detection of Zn2+ and an application in living cells. Luminescence 34:106–112. https://doi.org/10.1002/bio.3585

  6. Haino T, Rudkevich DM, Shivanyuk A et al (2000) Induced-fit molecular recognition with water-soluble cavitands. Chem Eur J 6:3797–3805. https://doi.org/10.1002/1521-3765(20001016)6:20<3797::AID-CHEM3797>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  7. Suwattanamala A, Magalhães AL, Gomes JANF (2007) Theoretical study on the structure and conformational features of distally dibromo-dipropoxythiacalix[4]arene derivatives and their Zn2+ complexes. Theor Chem Accounts 117:431–440. https://doi.org/10.1007/s00214-006-0173-6

    Article  CAS  Google Scholar 

  8. Gassoumi B, Chaabene M, Ghalla H, Chaabane RB (2019) Physicochemical properties of the three-cavity form of calix[n = 4, 6, 8]aren molecules: DFT investigation. Theor Chem Accounts 138:58. https://doi.org/10.1007/s00214-019-2425-2

    Article  CAS  Google Scholar 

  9. Atwood JL, Koutsantonis GA, Raston CL (1994) Purification of C60 and C70 by selective complexation with calixarenes. Nature 368:229–231. https://doi.org/10.1038/368229a0

    Article  CAS  Google Scholar 

  10. Da Silva E, Lazar AN, Coleman AW (2004) Biopharmaceutical applications of calixarenes. J Drug Deliv Sci Technol 14:3–20. https://doi.org/10.1016/S1773-2247(04)50001-1

    Article  Google Scholar 

  11. Fahmy SA, Ponte F, Abd El-Rahman MK et al (2018) Investigation of the host-guest complexation between 4-sulfocalix[4]arene and nedaplatin for potential use in drug delivery. Spectrochim Acta A Mol Biomol Spectrosc 193:528–536. https://doi.org/10.1016/j.saa.2017.12.070

    Article  CAS  PubMed  Google Scholar 

  12. Schühle DT, Peters JA, Schatz J (2011) Metal binding calixarenes with potential biomimetic and biomedical applications. Coord Chem Rev 255:2727–2745. https://doi.org/10.1016/j.ccr.2011.04.005

    Article  CAS  Google Scholar 

  13. Balasaheb Nimse S, Kim T (2013) Biological applications of functionalized calixarenes. Chem Soc Rev 42:366–386. https://doi.org/10.1039/C2CS35233H

    Article  Google Scholar 

  14. Hua B, Shao L, Zhang Z et al (2018) Pillar[6]arene/acridine orange host–guest complexes as colorimetric and fluorescence sensors for choline compounds and further application in monitoring enzymatic reactions. Sensors Actuators B Chem 255:1430–1435. https://doi.org/10.1016/j.snb.2017.08.141

    Article  CAS  Google Scholar 

  15. Kaneko S, Inokuchi Y, Ebata T et al (2011) Laser spectroscopic and theoretical studies of encapsulation complexes of calix[4]arene. J Phys Chem A 115:10846–10853. https://doi.org/10.1021/jp204577j

    Article  CAS  PubMed  Google Scholar 

  16. Cabral BJC, Coutinho K, Canuto S (2014) Dynamics of endo- vs. exo-complexation and electronic absorption of calix[4]arene-Ar2. Chemical Physics Letters 612:266–272. https://doi.org/10.1016/j.cplett.2014.08.036

  17. Gassoumi B, Ghalla H, Chaabane RBen (2019) DFT and TD-DFT investigation of calix[4]arene interactions with TFSI− ion. Heliyon 5:e02822. https://doi.org/10.1016/j.heliyon.2019.e02822

  18. Athar M, Das S, Jha PC, Jha AM (2018) Conformational equilibrium study of calix[4]tetrolarenes using density functional theory (DFT) and molecular dynamics simulations. Supramol Chem 30:982–993. https://doi.org/10.1080/10610278.2018.1517876

    Article  CAS  Google Scholar 

  19. Zare K, Shadmani N, Pournamdari E (2013) DFT/NBO study of nanotube and calixarene with anti-cancer drug. J Nanostruct Chem 3:75. https://doi.org/10.1186/2193-8865-3-75

    Article  Google Scholar 

  20. Masoumi S, Nadimi E, Hossein-Babaei F (2018) Electronic properties of Ag-doped ZnO: DFT hybrid functional study. Phys Chem Chem Phys 20:14688–14693. https://doi.org/10.1039/C8CP01578C

    Article  CAS  PubMed  Google Scholar 

  21. Mazzone G, Alberto ME, Ponte F et al (2018) Anion-π weak interactions in a heteroaromatic calixarene receptor. A theoretical investigation. Inorg Chim Acta 470:379–384. https://doi.org/10.1016/j.ica.2017.05.033

    Article  CAS  Google Scholar 

  22. Evans JD, Hollis CA, Hack S et al (2012) Anion−π interactions of hexaaryl[3]radialenes. J Phys Chem A 116:8001–8007. https://doi.org/10.1021/jp301464s

    Article  CAS  PubMed  Google Scholar 

  23. G09 | Gaussian.com, http://gaussian.com/glossary/g09/

  24. Dennington RI, Keith T, Millam J, GaussView Version 5.0.8. Semichem Inc

  25. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

    Article  CAS  Google Scholar 

  26. Allouche A-R (2011) Gabedit—a graphical user interface for computational chemistry softwares. J Comput Chem 32:174–182. https://doi.org/10.1002/jcc.21600

    Article  CAS  PubMed  Google Scholar 

  27. Biegler-Konig JSF, Bayles D (2001) Software news and updates AIM 2000. J Comput Chem 22

  28. Johnson ER, Keinan S, Mori-Sánchez P et al (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Furer VL, Potapova LI, Kovalenko VI (2017) DFT study of hydrogen bonding and IR spectra of calix[6]arene. J Mol Struct 1128:439–447. https://doi.org/10.1016/j.molstruc.2016.09.010

    Article  CAS  Google Scholar 

  30. Mchedlov-Petrossyan NO, Vilkova LN, Vodolazkaya NA et al (2006) The nature of aqueous solutions of a cationic calix[4]arene: a comparative study of dye–calixarene and dye–surfactant interactions. Sensors 6:962–977. https://doi.org/10.3390/s6080962

    Article  CAS  Google Scholar 

  31. Furer VL, Vandyukov AE, Zaripov SR et al (2018) FT-IR and FT-Raman study of hydrogen bonding in p-alkylcalix[8]arenes. Vib Spectrosc 95:38–43. https://doi.org/10.1016/j.vibspec.2018.01.006

    Article  CAS  Google Scholar 

  32. Israr M, Faheem F, Minhas FT, Rau A, Rauf S, Sha MR, Rahim F, Shah K, Bhanger MI (2016) Extraction properties of calix[4]arenes towards sulphonated dyes. Am J Anal Chem 07. https://doi.org/10.4236/ajac.2016.72019

  33. Bhatt M, Maity D, Hingu V et al (2017) Functionalized calix[4]arene as a colorimetric dual sensor for Cu(II) and cysteine in aqueous media: experimental and computational study. New J Chem 41:12541–12553. https://doi.org/10.1039/C7NJ02537H

    Article  CAS  Google Scholar 

Download references

Acknowledgments

In this work, we were granted access to the HPC resources of the FLMSN, “Fédération Lyonnaise de Modélisation et Sciences Numériques,” partner of EQUIPEX EQUIP@MESO and to the “Centre de calcul CC-IN2P3” at Villeurbanne, France.

Funding

The authors were financially supported by the Tunisian Ministry of High Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bouzid Gassoumi or Rafik Ben Chaabane.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 646 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gassoumi, B., Ghalla, H. & Chaabane, R.B. Host-guest complexation studies of NO3, NO2, CO2, and N2 gas with the calix[4]arene molecule. J Mol Model 26, 149 (2020). https://doi.org/10.1007/s00894-020-04416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04416-2

Keywords

Navigation