Skip to main content
Log in

HBGA binding modes and selectivity in noroviruses upon mutation: a docking and molecular dynamics study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Norovirus, also called winter vomiting bug, is the most common cause for gastroenteritis and severe childhood diarrhea disease. High mutation rates cause drug resistance and thus complicate the development of an effective therapeutics against virus infection. The virus protein enters the host cell via the interaction with histo-blood group antigens (HBGAs), formed by oligosaccharides. To date, the crystal structures of numerous complexes of virus proteins with different antigens have been reported. The HBGAs bind to the two distinct regions of the virus proteins. Herein, the affinity of different variants of virus protein to some common glycans has been computationally analyzed. Molecular docking studies as combination of docking scores and rmsd values revealed that the binding region 1 is more attractive for the ligands in variants of categories 1–5, but selectivity is drastically shifted to region 2 due to in category 6. In addition, molecular dynamics simulations were unraveled when the region 1 is hindered (in category 6); the blocking loop has less fluctuation than that of unblocked in other categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 6

Similar content being viewed by others

References

  1. Hoa Tran TN et al (2013) Molecular epidemiology of noroviruses associated with acute sporadic gastroenteritis in children: global distribution of genogroups, genotypes and GII.4 variants. J. Clin. Virol. 56(3):185–193

    Article  CAS  Google Scholar 

  2. Karst SM et al (2014) Advances in norovirus biology. Cell Host Microbe 15(6):668–680

    Article  CAS  Google Scholar 

  3. Rocha-Pereira J, Neyts J, Jochmans D (2014) Norovirus: targets and tools in antiviral drug discovery. Biochem. Pharmacol. 91(1):1–11

    Article  CAS  Google Scholar 

  4. Belliot G et al (2014) The burden of norovirus gastroenteritis: an important foodborne and healthcare-related infection. Clin. Microbiol. Infect. 20(8):724–730

    Article  CAS  Google Scholar 

  5. de Graaf M, van Beek J, Koopmans MP (2016) Human norovirus transmission and evolution in a changing world. Nat Rev Microbiol 14(7):421–433

    Article  Google Scholar 

  6. Desselberger U, Goodfellow I (2014) Noroviruses: a global cause of acute gastroenteritis. Lancet Infect. Dis. 14(8):664–665

    Article  Google Scholar 

  7. Hardy ME (2005) Norovirus protein structure and function. FEMS Microbiol. Lett. 253(1):1–8

    Article  CAS  Google Scholar 

  8. Aliabadi N et al (2015) Progress toward norovirus vaccines: considerations for further development and implementation in potential target populations. Expert Review of Vaccines 14(9):1241–1253

    Article  CAS  Google Scholar 

  9. Bartsch, S.M., et al., Global economic burden of norovirus gastroenteritis. PLoS One, 2016. 11(4)

    Article  Google Scholar 

  10. Tan M, Jiang X (2014) Vaccine against norovirus. Hum Vaccin Immunother 10(6):1449–1456

    Article  CAS  Google Scholar 

  11. Bull, R.A., et al., Rapid evolution of pandemic noroviruses of the GII.4 lineage. PLoS Pathog, 2010. 6(3): p. e1000831

    Article  Google Scholar 

  12. Shanker S et al (2014) Structural analysis of determinants of histo-blood group antigen binding specificity in genogroup I noroviruses. J. Virol. 88(11):6168–6180

    Article  CAS  Google Scholar 

  13. Shanker S et al (2016) Structural basis for norovirus neutralization by an HBGA blocking human IgA antibody. Proc. Natl. Acad. Sci. U. S. A. 113(40):E5830–E5837

    Article  CAS  Google Scholar 

  14. Caddy S et al (2014) Genogroup IV and VI canine noroviruses interact with histo-blood group antigens. J. Virol. 88(18):10377–10391

    Article  Google Scholar 

  15. Sapparapu G et al (2016) Frequent use of the IgA isotype in human B cells encoding potent norovirus-specific monoclonal antibodies that block HBGA binding. PLoS Pathog. 12(6):e1005719

    Article  Google Scholar 

  16. Tamminen K et al (2016) Mucosal antibodies induced by intranasal but not intramuscular immunization block norovirus GII.4 virus-like particle receptor binding. Viral Immunol. 29(5):315–319

    Article  CAS  Google Scholar 

  17. Garaicoechea L et al (2015) Llama nanoantibodies with therapeutic potential against human norovirus diarrhea. PLoS One 10(8):e0133665

    Article  Google Scholar 

  18. Lochridge VP et al (2005) Epitopes in the P2 domain of norovirus VP1 recognized by monoclonal antibodies that block cell interactions. J Gen Virol 86(Pt 10):2799–2806

    Article  CAS  Google Scholar 

  19. DeLano, W.L., The PyMOL molecular graphics system. 2002

    Google Scholar 

  20. Altschul SF et al (1990) Basic local alignment search tool. J. Mol. Biol. 215(3):403–410

    Article  CAS  Google Scholar 

  21. Schrödinger, L., Maestro, in Schrödinger Release 2015-2. 2015, Schrödinger, LLC: New York, NY

  22. Olsson MH et al (2011) PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7(2):525–537

    Article  CAS  Google Scholar 

  23. M. J. Frisch, G.W.T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01. 2015, Gaussian, Inc.: Wallingford CT

  24. Lütteke, T., M. Frank, and C.-W. von der Lieth, Carbohydrate Structure Suite (CSS): analysis of carbohydrate 3D structures derived from the PDB. Nucleic Acids Research, 2005. 33(suppl_1): p. D242-D246

    Article  Google Scholar 

  25. Böhm, M., et al., Glycosciences.DB: an annotated data collection linking glycomics and proteomics data (2018 update). Nucleic Acids Research, 2018. 47(D1): p. D1195-D1201

    Article  Google Scholar 

  26. Schrödinger, L., QM-Polarized Ligand Docking protocol, in Glide version 6.7. 2015, Schrodinger, LLC: New York, NY

  27. Jones G et al (1997) Development and validation of a genetic algorithm for flexible docking1. J. Mol. Biol. 267(3):727–748

    Article  CAS  Google Scholar 

  28. Abraham MJ et al (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1-2:19–25

    Article  Google Scholar 

  29. Lindorff-Larsen K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78(8):1950–1958

  30. Toukan K, Rahman A (1985) Molecular-dynamics study of atomic motions in water. Phys. Rev. B Condens. Matter 31(5):2643–2648

    Article  CAS  Google Scholar 

  31. Darden, T.A., D. York, and L. Pedersen, J. Chem. Phys., 1993. 98: p. 10089

  32. Kocak A et al (2016) Computational insights into the protonation states of catalytic dyad in BACE1-acyl guanidine based inhibitor complex. J. Mol. Graph. Model. 70:226–235

    Article  CAS  Google Scholar 

  33. Kocak A, Yildiz M (2017) Docking, molecular dynamics and free energy studies on aspartoacylase mutations involved in Canavan disease. J. Mol. Graph. Model. 74:44–53

    Article  CAS  Google Scholar 

  34. Koppisetty CAK et al (2010) Computational studies on the interaction of ABO-active saccharides with the norovirus VA387 capsid protein can explain experimental binding data. J. Comput. Aided Mol. Des. 24(5):423–431

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources). AK acknowledges the Schrodinger, LLC, for providing the evaluation copy of the software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulkadir Kocak.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kocak, A. HBGA binding modes and selectivity in noroviruses upon mutation: a docking and molecular dynamics study. J Mol Model 25, 369 (2019). https://doi.org/10.1007/s00894-019-4261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4261-7

Keywords

Navigation