Skip to main content
Log in

Spin polarization in graphene nanoribbons functionalized with nitroxide

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Fine-tuning of magnetic states via an understanding of spin injection on the edge of graphene nanoribbons should allow for greater flexibility of the design of graphene-based spintronics. On the basis of calculations, we predict that coupling constants of the exchange interaction in the series of nitroxide-functionalized ribbon compounds are antiferromagnetic across the ribbons with values 0.2–0.4 cm−1 and ferromagnetic along the ribbon with absolute values from 0.05 to 0.07 cm−1. Such interacting nitroxide groups induce spin polarization of the edge states of stable graphene nanoribbons.

Exchange coupling constants inducing spin polarization in graphene nanoribbons functionalized with nitroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Park J-H, Vescovo E, Kim H-J, Kwon C, Ramesh R, Venkatesan T (1998) Direct evidence for a half-metallic ferromagnet. Nature 392:794

    Article  CAS  Google Scholar 

  2. Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444:347

    Article  CAS  Google Scholar 

  3. Kan E-J, Li Z, Hou JG (2008) Half-metallicity in edge-modified zigzag graphene nanoribbons. J Am Chem Soc 130:4224

    Article  Google Scholar 

  4. Dutta S, Manna AK, Pati SK (2009) Intrinsic half-metallicity in modified graphene nanoribbons. Phys Rev Lett 102:096601

    Article  Google Scholar 

  5. Pruneda JM (2010) Origin of half-semimetallicity induced at interfaces of C-BN heterostructures. Phys Rev B 81:161409

    Article  Google Scholar 

  6. Bhowmick S, Singh AK, Yakobson BI (2011) Vacancy clusters in Graphane as quantum dots. J Phys Chem C 115:9889

    Article  CAS  Google Scholar 

  7. Klinovaja J, Loss D (2013) Giant spin-orbit interaction due to rotating magnetic fields in graphene nanoribbons. Phys Rev X 3:011008

    Google Scholar 

  8. Hagelberg F, Kaiser A, Sukuba I, Probst M (2017) Spin filter properties of armchair graphene nanoribbons with substitutional Fe atoms. Mol Phys 115:2231

    Article  CAS  Google Scholar 

  9. Galashev AE, Rakhmanova OR (2014) Mechanical and thermal stability of graphene and graphene-based materials. Physics-Uspekhi 57:970

    Article  CAS  Google Scholar 

  10. Nan HY, Ni ZH, Wang J, Zafar Z, Shia ZX, Wang YY (2013) The thermal stability of graphene in air investigated by Raman spectroscopy. J Raman Spectrosc 44:1018

    Article  CAS  Google Scholar 

  11. Chen JH, Jang C, Xiao S, Ishigami M, Furher MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206

    Article  CAS  Google Scholar 

  12. Ochoa H, Castro Neto AH, Guinea F (2012) Elliot-Yafet mechanism in graphene. Phys Rev Lett 108:206808

    Article  CAS  Google Scholar 

  13. Tombros N, Jozsa C, Popinciuc C, Jonkman HT, van Wees BJ (2007) Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448:571

  14. Wimmer M, Adagideli I, Berber S, Tomanek D, Richter K (2008) Spin currents in rough graphene nanoribbons: universal fluctuations and spin injection. Phys Rev Lett 100:177207

    Article  Google Scholar 

  15. Jaiswal NK, Srivastava P (2013) Fe-doped armchair graphene nanoribbons for spintronic/interconnect applications. IEEE Trans Nanotech 12:685

    Article  CAS  Google Scholar 

  16. Yan S-L, Long M-Q, Zhang X-J, Xu H (2014) The effects of spin-filter and negative differential resistance on Fe-substituted zigzag graphene nanoribbons. Phys Lett A 378:960

    Article  Google Scholar 

  17. Garcia-Fuente A, Gallego LJ, Vega A (2016) Spin-polarized transport in hydrogen-passivated graphene and silicene nanoribbons with magnetic transition-metal substituents. Phys Chem Chem Phys 18:22606

    Article  CAS  Google Scholar 

  18. Baldwin JPC, Hancock Y (2013) Effects of strain on notched zigzag graphene nanoribbons. Crystals 3:38

    Article  CAS  Google Scholar 

  19. Han W, Kawakami RK, Gmitra M, Fabian J (2014) Graphene spintronics. Nat Nanotechnol 9:794

    Article  CAS  Google Scholar 

  20. Pesin D, MacDonald AH (2012) Spintronics and pseudospintronics in graphene and topological insulators. Nat Mater 11:409

    Article  CAS  Google Scholar 

  21. Yazyev OV (2010) Emergence of magnetism in graphene materials and nanostructures. Rep Prog Phys 73:056501

    Article  Google Scholar 

  22. Wu J, Hagelberg F (2013) Impact of tube curvature on the ground-state magnetism of axially confined single-walled carbon nanotubes of the zigzag-type. ChemPhysChem 14:1696

    Article  CAS  Google Scholar 

  23. Ruffieux P, Wang S, Yang B, Sánchez-Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli CA, Passerone D, Dumslaff T, Feng X, Müllen K, Fasel R (2016) On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531:489

    Article  CAS  Google Scholar 

  24. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470

    Article  CAS  Google Scholar 

  25. Yang X, Dou X, Rouhanipour A, Zhi L, Räder HJ, Müllen K (2008) Two-dimensional graphene nanoribbons. J Am Chem Soc 130:4216

    Article  CAS  Google Scholar 

  26. Schwab MG, Schwab G, Narita A, Hernandez Y, Balandina T, Mali KS, Feyter SD, Feng X, Müllen K (2012) Structurally defined graphene nanoribbons with high lateral extension. J Am Chem Soc 134:18169

    Article  CAS  Google Scholar 

  27. Narita A, Feng X, Hernandez Y, Jensen SA, Bonn M, Yang H, Verzhbitskiy IA, Casiraghi C, Hansen MR, Koch AH, Fytas G, Ivasenko O, Li B, Mali KS, Balandina T, Mahesh S, De Feyter S, Müllen K (2014) Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat Chem 6:126

  28. Narita A, Wang X-Y, Feng X, Müllen K (2015) New advances in nanographene chemistry. Chem Soc Rev 44:6616

    Article  CAS  Google Scholar 

  29. Konnerth R, Cervetti C, Narita A, Feng X, Müllen K, Hoyer A, Burghard M, Kern K, Dressel M, Bogani L (2015) Tuning the deposition of molecular graphene nanoribbons by surface functionalization. Nanoscale 7:12807

    Article  CAS  Google Scholar 

  30. Keerthi A, Radha B, Rizzo D, Lu H, Cabanes VD, Hou IC-Y, Beljonne D, Cornil J, Casiraghi C, Baumgarten M, Müllen K, Narita A (2017) Edge functionalization of structurally defined graphene nanoribbons for modulating the self-assembled structures. J Am Chem Soc 139:16454

    Article  CAS  Google Scholar 

  31. Slota M, Keerthi A, Myers WK, Tretyakov E, Baumgarten M, Ardavan A, Sadeghi H, Lambert CJ, Narita A, Müllen K, Bogani L (2018) Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature 557:691

    Article  CAS  Google Scholar 

  32. Stass D, Tretyakov E (2019) Estimation of absolute spin counts in nitronyl nitroxide-bearing graphene nanoribbons. J Appl Magn Res, submitted

  33. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

  34. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  35. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys Rev B 57:1505

    Article  CAS  Google Scholar 

  36. Morozov VA, Petrova MV, Lukzen NN (2015) Exchange coupling transformations in cu (II) heterospin complexes of “breathing crystals” under structural phase transitions. AIP Adv 5:087161

    Article  Google Scholar 

  37. Streltsov SV, Petrova MV, Morozov VA, Romanenko GV, Anisimov VI, Lukzen NN (2013) Interplay between lattice, orbital, and magnetic degrees of freedom in the chain-polymer cu(II) breathing crystals. Phys Rev B 87:024425

    Article  Google Scholar 

  38. Yamaguchi K, Fukui H, Fueno T (1986) Molecular orbital (MO) theory for magnetically interacting organic compounds. Ab-initio MO calculations of the effective exchange integrals for cyclophane-type carbene dimers. Chem Lett 15:625

    Article  Google Scholar 

  39. Luis F, Coronado E (2018) Spinning on the edge of graphene. Nature 557:645

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Russian Science Foundation (grant 18-13-00173). ET is grateful to Dr. D. Stass for discussions regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeny Tretyakov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, V., Tretyakov, E. Spin polarization in graphene nanoribbons functionalized with nitroxide. J Mol Model 25, 58 (2019). https://doi.org/10.1007/s00894-019-3944-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-3944-4

Keywords

Navigation