Skip to main content
Log in

An Occam’s razor approach to chemical hardness: lex parsimoniae

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The term “chemical hardness” refers to the resistance to deformation of the electronic density of a system; the greater this resistance, the “harder” the system. Polarizability, a physical property, is an inverse measure of resistance to deformation and thus should be inversely related to hardness. This is indeed generally accepted. Hardness has been postulated to be the second derivative of a system’s energy with respect to its number of electrons, despite the fact that this involves the differentiation of a noncontinuous function. This second derivative is typically approximated as the difference between the ionization energy I and the electron affinity A of the ground-state system, which results in ambiguity in that many molecules do not form stable negative ions. For atoms, the quantity I A does vary approximately inversely with polarizability, but this is only because the electron affinity is usually relatively low and ionization energy is known to be inversely related to polarizability for atoms. However, molecular polarizability depends primarily upon volume, and so does not show an acceptable inverse correlation with I A. Since both hardness and polarizability refer to the same property of a system—its resistance to deformation of the electronic density, we propose that the reciprocal of polarizability be taken to be a measure of hardness. We show that polarizabilities that are not known can be estimated quite accurately in terms of the average local ionization energies on the atomic or molecular surfaces and, for molecules, their volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pearson RG (1992) J Mol Struct (THEOCHEM) 255:261–270

    Article  Google Scholar 

  2. Pearson RG (1992) Inorg Chim Acta 198-200:781–786

    Article  CAS  Google Scholar 

  3. Pearson RG (1988) Inorg Chem 27:734–740

    Article  CAS  Google Scholar 

  4. Pearson RG (1994) J Phys Chem 98:1989–1992

    Article  CAS  Google Scholar 

  5. Ahrland S, Chatt J, Davies NR (1958) Quart Rev (London) 12:265–276

    Article  CAS  Google Scholar 

  6. Edwards JO, Peaerson RG (1962) J Am Chem Soc 84:16–24

    Article  CAS  Google Scholar 

  7. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  8. Pearson RG (1966) Science 151:172–177

    Article  CAS  PubMed  Google Scholar 

  9. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic chemistry: principles of structure and reactivity, 4th edn. HarperCollins, New York

    Google Scholar 

  10. Iczkowski RP, Margrave JL (1961) J Am Chem Soc 83:3547–3551

    Article  CAS  Google Scholar 

  11. Huheey JE (1965) J Phys Chem 69:3284–3291

    Article  CAS  Google Scholar 

  12. Huheey JE (1971) J Org Chem 36:204–205

    Article  CAS  Google Scholar 

  13. Huheey JE, Watts JC (1971) Inorg Chem 10:1553–1554

    Article  CAS  Google Scholar 

  14. Politzer P, Huheey JE, Murray JS, Grodzicki M (1992) J Mol Struct (THEOCHEM) 259:99–120

    Article  Google Scholar 

  15. Sanderson RT (1952) J Am Chem Soc 74:272–274

    Article  CAS  Google Scholar 

  16. Sanderson RT (1955) Science 121:207–208

    Article  CAS  PubMed  Google Scholar 

  17. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  18. Politzer P (1987) J Chem Phys 86:1072–1073

    Article  CAS  Google Scholar 

  19. Komorowski L (1987) Chem Phys Lett 134:536–540

    Article  CAS  Google Scholar 

  20. Komorowski L (1987) Chem Phys 114:55–71

    Article  CAS  Google Scholar 

  21. Pearson RG (1988) J Am Chem Soc 110:7684–7690

    Article  CAS  Google Scholar 

  22. Nagle JK (1990) J Am Chem Soc 112:4741–4747

    Article  CAS  Google Scholar 

  23. Hati S, Datta D (1994) J Phys Chem 98:10451–10454

    Article  CAS  Google Scholar 

  24. Hati S, Datta D (1995) J Phys Chem 99:10742–10746

    Article  CAS  Google Scholar 

  25. Hati S, Datta D (1996) J Phys Chem 100:4828–4830

    Article  CAS  Google Scholar 

  26. Simόn-Manso Y, Fuentealba P (1998) J Phys Chem A 102:2029–2032

    Article  Google Scholar 

  27. Chattaraj PK, Fuentealba P, Jaque P, Toro-Labbé A (1999) J Phys Chem A 103:9307–9312

    Article  CAS  Google Scholar 

  28. Thakkar AJ (2001) In: Moore JH, Spencer ND (eds) Encyclopedia of chemical physics and physical chemistry, vol I. Institute of Physics Publishing, Bristol, Chap A1.5, pp 161–186

  29. Pearson RG (1987) J Chem Educ 64:561–567

    Article  CAS  Google Scholar 

  30. Pearson RG (1993) Acc Chem Res 26:250–255

    Article  CAS  Google Scholar 

  31. Chattaraj PK, Sengupta S (1996) J Phys Chem 100:16126–16130

    Article  CAS  Google Scholar 

  32. Pearson RG, Palke WE (1992) J Phys Chem 96:3283–3285

    Article  CAS  Google Scholar 

  33. Gázquez JL, Martínez A, Méndez F (1993) J Phys Chem 97:4059–4063

    Article  Google Scholar 

  34. Pal S, Vaval N, Roy R (1993) J Phys Chem 97:4404–4406

    Article  CAS  Google Scholar 

  35. Torrent-Sucarrat M, Luis JM, Duran M, Solà M (2001) J Am Chem Soc 123:7951–7952

    Article  CAS  PubMed  Google Scholar 

  36. Chandra AK, Uchimaru T (2001) J Phys Chem A 105:3578–3582

    Article  CAS  Google Scholar 

  37. Chattaraj PK, Ayers PW (2005) J Chem Phys 123:086101 (1–2)

    Article  PubMed  CAS  Google Scholar 

  38. Ordon P, Tachibana A (2007) J Chem Phys 126:234115 (1–11)

    Article  PubMed  CAS  Google Scholar 

  39. Politzer P, Murray JS, Macaveiu L (2010) J Mol Struct (THEOCHEM) 943:53–58

    Article  CAS  Google Scholar 

  40. Blair SA, Thakkar AJ (2013) Chem Phys Lett 556:346–349

    Article  CAS  Google Scholar 

  41. Grochala W (2017) Phys Chem Chem Phys 19:30964–30983

    Article  CAS  PubMed  Google Scholar 

  42. Pan S, Solà M, Chattaraj PK (2013) J Phys Chem A 117:1843–1852

    Article  CAS  PubMed  Google Scholar 

  43. Grochala W (2017) Phys Chem Chem Phys 19:30984–31006

    Article  CAS  PubMed  Google Scholar 

  44. Gázquez JL, Ortiz E (1984) J Chem Phys 81:2741–2748

    Article  Google Scholar 

  45. Szentpály L (2017) J Mol Model 23:217(1–22) and references cited therein

  46. Komorowski L (1987) Z Naturforsch 42a:767–773

    Article  Google Scholar 

  47. Ghanty TK, Ghosh SK (1994) J Phys Chem 98:9197–9201

    Article  CAS  Google Scholar 

  48. Lipiński J, Komorowski L (1996) Chem Phys Lett 262:449–454

    Article  Google Scholar 

  49. Bergmann D, Hinze J (1996) Angew Chem Int Ed Engl 35:150–163

    Article  CAS  Google Scholar 

  50. Gázquez JL, Garza J, Hinojosa FD, Vela A (2007) J Chem Phys 126:214105 (1-8)

    Article  PubMed  CAS  Google Scholar 

  51. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  52. Hohenberg P, Kohn W (1964) Phys Rev 136:B864–B871

    Article  Google Scholar 

  53. March NH (1993) Struct Bond 80:71–86

    Article  CAS  Google Scholar 

  54. Nguyen-Dang TT, Bader RFW, Essén H (1982) Int J Quantum Chem 22:1049–1058

    Article  CAS  Google Scholar 

  55. Hinze J (1999) In: Maksic ZB, Orville-Thomas WJ (eds) Pauling’s legacy: modern modelling of the chemical bond. Elsevier, Amsterdam, Chap 7, pp 189–212

  56. Chermette H (1999) J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  57. Politzer P, Murray JS (2018) J Mol Model 24:214 (1–8)

    Article  PubMed  Google Scholar 

  58. Gyftopoulos EP, Hatsopoulos GN (1968) Proc Natl Acad Sci U S A 60:786–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gopinathan MS, Whitehead MA (1980) Israel J Chem 19:209–214

    Article  CAS  Google Scholar 

  60. Perdew JP, Parr RG, Levy M, Balduz Jr JL (1982) Phys Rev Lett 49:1691–1694

    Article  CAS  Google Scholar 

  61. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  62. Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  63. Zhang Y, Yang W (2000) Theor Chem Accounts 103:346–348

    Article  CAS  Google Scholar 

  64. Geerlings P, De Proft F, Langenaeker W (2003) Chem Rev 103:1793–1874

    Article  CAS  PubMed  Google Scholar 

  65. Miranda-Quintana RA, Ayers PW (2016) J Chem Phys 144:244112

    Article  PubMed  CAS  Google Scholar 

  66. Heidar-Zadeh F, Miranda-Quintana RA, Verstraelen T, Bultinck P, Ayers PW (2016) J Chem Theory Comput 12:5777–5787

    Article  CAS  PubMed  Google Scholar 

  67. Politzer P, Murray JS (2006) Chem Phys Lett 431:195–198

    Article  CAS  Google Scholar 

  68. Politzer P, Murray JS, Concha MC, Jim P (2007) Collect Czechoslov Chem Commun 72:51–63

    Article  CAS  Google Scholar 

  69. Cárdenas C, Ayers P, De Proft F, Tozer DJ, Geerlings P (2011) Phys Chem Chem Phys 13:2285–2293

    Article  PubMed  Google Scholar 

  70. Cárdenas C, Heidar-Zadeh F, Ayers PW (2016) Phys Chem Chem Phys 18:25721–25734

    Article  PubMed  CAS  Google Scholar 

  71. Lide DR (2006) Handbook of chemistry and physics, 87th edn. CRC, Boca Raton

  72. Bonin KD, Kresin VV (1997) Electric-dipole polarizabilities of atoms, molecules and clusters. World Scientific, Singapore

    Book  Google Scholar 

  73. Ayers PW (2007) Faraday Discuss 135:161–119

    Article  CAS  PubMed  Google Scholar 

  74. Linstrom PJ, Mallard WG NIST chemistry webbook. National Institute of Standards and Technology, Gaithersburg. https://doi.org/10.18434/T4D303

  75. Kagawa H, Ichimura A, Kamka NA, Mori K (2001) J Mol Struct (THEOCHEM) 546:127–141

    Article  CAS  Google Scholar 

  76. Miller KJ (1990) J Am Chem Soc 112:8533–8542

    Article  CAS  Google Scholar 

  77. Blair SA, Thakkar AJ (2014) J Chem Phys 141:074306 (1-8)

    Article  PubMed  CAS  Google Scholar 

  78. Ghanty TK, Ghosh SK (1993) J Phys Chem 97:4951–4953

    Article  CAS  Google Scholar 

  79. Fricke B (1986) J Chem Phys 84:862–866

    Article  CAS  Google Scholar 

  80. Politzer P, Murray JS, Grice ME, Brinck T, Ranganathan S (1991) J Chem Phys 95:6699–6704

    Article  CAS  Google Scholar 

  81. Dimitrieva IK, Plindov GI (1983) Phys Scr 27:402–406

    Article  Google Scholar 

  82. Glasstone S (1940) Text-book of physical chemistry. Van Nostrand, New York

    Google Scholar 

  83. Teixeira-Das JJC, Murrell JN (1970) Mol Phys 19:329–335

    Article  Google Scholar 

  84. Gough KM (1989) J Chem Phys 91:2424–2432

    Article  CAS  Google Scholar 

  85. Brinck T, Murray JS, Politzer P (1993) J Chem Phys 98:4305–4306

    Article  CAS  Google Scholar 

  86. Jin P, Murray JS, Politzer P (2004) Int J Quantum Chem 96:394–401

    Article  CAS  Google Scholar 

  87. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  88. Fuentealba P, Simόn-Manso Y (1997) J Phys Chem A 101:4231–4235

    Article  CAS  Google Scholar 

  89. Couling VW, Halliburton BW, Keir RI, Ritchie GLD (2001) J Phys Chem A 105:4365–4370

    Article  CAS  Google Scholar 

  90. Lillestolen TC, Wheatley RJ (2007) J Phys Chem A 111:11141–11146

    Article  CAS  PubMed  Google Scholar 

  91. Stott MJ, Zaremba E (1980) Phys Rev A 21:12–23

    Article  CAS  Google Scholar 

  92. Vela A, Gázquez JL (1990) J Am Chem Soc 112:1490–1492

    Article  CAS  Google Scholar 

  93. Sjoberg P, Brinck T, Murray JS, Politzer P (1990) Can J Chem 68:1440–1443

    Article  CAS  Google Scholar 

  94. Politzer P, Murray JS (2007) In: Toro-Labbé A (ed) Chemical reactivity. Elsevier, Amsterdam, Chap 8, pp 119–137

  95. Politzer P, Murray JS, Bulat FA (2010) J Mol Model 16:1731–1742

    Article  CAS  PubMed  Google Scholar 

  96. Koopmans TA (1934) Physica 1:104–113

    Article  Google Scholar 

  97. Nesbet RK (1965) Adv Chem Phys 9:321–363

    Google Scholar 

  98. Politzer P, Abu-Awwad F, Murray JS (1998) Int J Quantum Chem 69:607–613

    Article  CAS  Google Scholar 

  99. Politzer P, Murray JS, Concha MC (2002) Int J Quantum Chem 88:19–27

    Article  CAS  Google Scholar 

  100. Ryabinkin IG, Staroverov VN (2014) J Chem Phys 141:084107 (1–8)

    Article  PubMed  CAS  Google Scholar 

  101. Kohut SV, Cuevas-Saavedra R, Staroverov VN (2016) J Chem Phys 145:074113 (1-6)

    Article  PubMed  CAS  Google Scholar 

  102. Murray JS, Politzer P (2009) Croat Chim Acta 82:267–275

    CAS  Google Scholar 

  103. Delgado-Barrio G, Prat RF (1975) Phys Rev A 12:2288–2297

    Article  CAS  Google Scholar 

  104. Politzer P, Murray JS, Grice ME (2005) Collect Czechoslov Chem Commun 70:550–558

    Article  CAS  Google Scholar 

  105. Politzer P, Shields ZP-I, Bulat FA, Murray JS (2011) J Chem Theory Comput 7:377–384

    Article  CAS  PubMed  Google Scholar 

  106. Jameson CJ, Buckingham AD (1980) J Chem Phys 73:5684–5692

    Article  CAS  Google Scholar 

  107. Berkowitz M, Ghosh SK, Parr RG (1985) J Am Chem Soc 107:6811–6814

    Article  CAS  Google Scholar 

  108. Ghosh SK, Berkowitz M (1985) J Chem Phys 83:2976–2983

    Article  CAS  Google Scholar 

  109. Jin P, Murray JS, Politzer P (2007) Comput Lett 3:373–385

    Article  CAS  Google Scholar 

  110. Ayers PW, Parr RG (2008) J Chem Phys 128:184108 (1-8)

    Article  PubMed  CAS  Google Scholar 

  111. Torrent-Sucarrat M, De Proft F, Ayers PW, Geerlings P (2010) Phys Chem Chem Phys 12:1072–1080

    Article  CAS  PubMed  Google Scholar 

  112. Gál T, Geerlings P, De Proft F, Torrent-Sucarrat M (2011) Phys Chem Chem Phys 13:15003–15015

    Article  PubMed  CAS  Google Scholar 

  113. Cuevas-Saavedra R, Rabi N, Ayers PW (2011) Phys Chem Chem Phys 13:19594–19600

    Article  CAS  PubMed  Google Scholar 

  114. Politzer P, Murray JS, Grice ME (1993) Struct Bond 80:101–114

    Article  CAS  Google Scholar 

  115. Murray JS, Peralta-Inga Z, Politzer P, Ekanayake K, LeBreton P (2001) Int J Quantum Chem 83:245–254

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Politzer.

Additional information

This paper belongs to Topical Collection 8th conference on Modeling & Design of Molecular Materials (MDMM 2018)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Politzer, P., Murray, J.S. An Occam’s razor approach to chemical hardness: lex parsimoniae. J Mol Model 24, 332 (2018). https://doi.org/10.1007/s00894-018-3864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3864-8

Keywords

Navigation