Skip to main content
Log in

The surrounding environments on the structure and antioxidative activity of luteolin

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Luteolin is an excellent antioxidant found in a wide variety of natural foods, such as honey and pollen. In this work, the effect of the surrounding environments on the structure and antioxidative activity of luteolin was carried out using density functional theory (DFT) calculation. The studied environments are gas, benzene, chloroform, pyridine, acetonitrile, ethanol, DMSO, and water. The structure of the luteolin monomer in different environments was optimized. The hydrogen-bond was especially focused, and the antioxidative capacity of luteolin was analyzed from the thermodynamic aspect. It is found that: (1) hydrogen atom transfer (HAT) is the most thermodynamically favorable mechanism in the gas, benzene, and chloroform phases, while sequential proton loss electron transfer (SPLET) is more favorable than HAT and single electron transfer followed by proton transfer (SET-PT) in pyridine, acetonitrile, ethanol, DMSO, and water phases. (2) The 4’−OH group could more strongly participate in the free radical scavenging process of luteolin than other OH groups, while the 5−OH group is the least favored one in the studied environments. (3) The antioxidative capacity of luteolin is strongest in pyridine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fang YZ, Yang S, Wu G (2002) Nutrition 18:872

    Article  CAS  PubMed  Google Scholar 

  2. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free Radic Biol Med 32:1102

    Article  CAS  PubMed  Google Scholar 

  3. Andersen ØM, Markham KR (eds) (2006) Flavonoids: chemistry, biochemistry and applications. Taylor and Francis, Boca Raton

    Google Scholar 

  4. Ross JA, Kasum CM (2002) Annu Rev Nutr 22:19

    Article  CAS  PubMed  Google Scholar 

  5. Arts MJ, Haenen GR, Voss HP, Bast A (2001) Food Chem Toxicol 39:787

    Article  CAS  PubMed  Google Scholar 

  6. Villano D, Fernández-Pachón MS, Moyá ML, Troncoso AM, García-Parrilla MC (2007) Talanta 71:230

    Article  CAS  PubMed  Google Scholar 

  7. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A et al (2002) Am J Clin Nutr 76:560

    Article  CAS  PubMed  Google Scholar 

  8. Nenadis N, Sigalas MP (2011) Food Res Int 44:114

    Article  CAS  Google Scholar 

  9. Benayahoum A, Amira-Guebailia H, Houache O (2013) J Mol Model 19:2285

    Article  CAS  PubMed  Google Scholar 

  10. Nenadis N, Tsimidou MZ (2012) Food Res Int 48:538

    Article  CAS  Google Scholar 

  11. Rocca MVL, Rutkowski M, Ringeissen S et al (2016) J Mol Model 22:250

    Article  CAS  PubMed  Google Scholar 

  12. Vargas-Sánchez RD, Mendoza-Wilson AM, Torrescano-Urrutia GR, Sánchez-Escalante A (2015) Comput Theor Chem 1066:7

    Article  CAS  Google Scholar 

  13. Lengyel J, Rimarčík J, Vagánek A, Klein E (2013) Phys Chem Chem Phys 15:10895

    Article  CAS  PubMed  Google Scholar 

  14. Zheng YZ, Zhou Y, Liang Q, Chen DF, Guo R, Xiong CL et al (2017) Dyes Pigments 141:179

    Article  CAS  Google Scholar 

  15. Vagánek A, Rimarčík J, Dropková K, Lengyel J, Klein E (2014) Comput Theor Chem 1050:31

    Article  CAS  Google Scholar 

  16. Zheng YZ, Deng G, Chen DF, Liang Q, Guo R, Fu ZM (2018) Food Chem 240:323

    Article  CAS  PubMed  Google Scholar 

  17. Xue Y, Zheng Y, An L, Dou Y, Liu Y (2014) Food Chem 151:198

    Article  CAS  PubMed  Google Scholar 

  18. Wang G, Xue Y, An L, Zheng Y, Dou Y, Zhang L et al (2015) Food Chem 171:89

    Article  CAS  PubMed  Google Scholar 

  19. Laskar RA, Sk I, Roy N, Begum NA (2010) Food Chem 122:233

    Article  CAS  Google Scholar 

  20. Sarkar A, Middya TR, Jana AD (2012) J Mol Model 18:2621

    Article  CAS  PubMed  Google Scholar 

  21. Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173

    Article  CAS  PubMed  Google Scholar 

  22. Leopoldini M, Russo N, Toscano M (2011) Food Chem 125:288

    Article  CAS  Google Scholar 

  23. Stepanić V, Trošelj KG, Lučić B, Marković Z, Amić D (2013) Food Chem 141:1562

    Article  CAS  PubMed  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, VothGA SP, Dannenberg JJ, Dapprich S, DanielsAD FÖ, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09, revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  25. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  PubMed  Google Scholar 

  26. Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170

    Article  CAS  Google Scholar 

  27. Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon, Oxford

    Google Scholar 

  28. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  CAS  PubMed  Google Scholar 

  29. Bartmess JE (1994) J Phys Chem 98:6420

    Article  CAS  Google Scholar 

  30. Rimarčík J, Lukeš V, Klein E, Ilčin M (2010) THEOCHEM J Mol Struct 952:25

    Article  CAS  Google Scholar 

  31. Parker VD (1992) J Am Chem Soc 114:7458

    Article  CAS  Google Scholar 

  32. Pauling L (1960) The nature of the chemical bond. Cornell University Press, New York

    Google Scholar 

  33. Roohi H, Nowroozi AR, Anjomshoa E (2011) Comput Theor Chem 965:211

    Article  CAS  Google Scholar 

  34. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154

    Article  CAS  Google Scholar 

  35. Pacios LF (2004) J Phys Chem A 108:1177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (21703035), Earmarked Fund for China Agriculture Research System (CARS-44-KXJ7), and the Fujian Agriculture and Forestry University Foundation for excellent youth teachers (xjq201715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Fu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YZ., Chen, DF., Deng, G. et al. The surrounding environments on the structure and antioxidative activity of luteolin. J Mol Model 24, 149 (2018). https://doi.org/10.1007/s00894-018-3680-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3680-1

Keywords

Navigation