Skip to main content
Log in

Mechanism for the depolymerization of cellulose under alkaline conditions

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The mechanism for the hydroxyl-radical-induced depolymerization of cellulose under alkaline conditions in air was investigated using density functional theory at the B3LYP/6-31+G(d,p) level as well as electron transfer theory. The pathway for the depolymerization of cellulose was obtained theoretically and H abstraction from the C(3) atom of the pyran ring during the cleavage of the glucosidic bond was found to be the rate-limiting step due to its high energy barrier (16.81 kcal/mol) and low reaction rate constant (4.623 × 104 mol L−1 s−1). Calculations of the electron transfer between O2 and the saccharide radical performed with the HARLEM software package revealed that following the H abstraction, the oxygen molecule approaches C(2) on the saccharide radical and obtains an electron from the radical, even though no bond forms between the oxygen molecule and the radical. The rate constant for electron transfer could be as high as 1.572 × 1011 s−1. Furthermore, an enol intermediate is obtained during the final stage of the depolymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kiemle SN, Zhang X, Esker AR, Toriz G, Gatenholm P, Cosgrove DJ (2014) Role of (1,3)(1,4)-beta-glucan in cell walls: interaction with cellulose. Biomacromolecules 15(5):1727–1736

    Article  CAS  PubMed  Google Scholar 

  2. Chaussy D, Martin CL, Roux J-C (2011) Rheological behavior of cellulose fiber suspensions: application to paper-making processing. Ind Eng Chem Res 50(6):3524–3533

    Article  CAS  Google Scholar 

  3. Wibowo AC, Mohanty AK, Misra M, Drzal LT (2004) Chopped industrial hemp fiber reinforced cellulosic plastic biocomposites: thermomechanical and morphological properties. Ind Eng Chem Res 43(16):4883–4888

    Article  CAS  Google Scholar 

  4. Popova E, Chernov A, Maryandyshev P, Brillard A, Kehrli D, Trouve G, Lyubov V, Brilhac JF (2016) Thermal degradations of wood biofuels, coals and hydrolysis lignin from the Russian Federation: experiments and modeling. Bioresour Technol 218:1046–1054

    Article  CAS  PubMed  Google Scholar 

  5. Sakaguchi M, Ohura T, Iwata T, Takahashi S, Akai S, Kan T, Murai H, Fujiwara M, Watanabe O, Narita M (2010) Diblock copolymer of bacterial cellulose and poly(methyl methacrylate) initiated by chain-end-type radicals produced by mechanical scission of glycosidic linkages of bacterial cellulose. Biomacromolecules 11(11):3059–3066

    Article  CAS  PubMed  Google Scholar 

  6. Giorgi R, Dei L, Ceccato M, Schettino C, Baglioni P (2001) Nanotechnologies for conservation of cultural heritage: paper and canvas deacidification. Langmuir 18(21):8198–8203

    Article  CAS  Google Scholar 

  7. Kanbargi N, Hu W, Lesser AJ (2017) Degradation mechanism of poly(p-phenylene-2,6-benzobisoxazole) fibers by 31P solid-state NMR. Polym Degrad Stab 136:131–138

  8. Ibn Yaich A, Edlund U, Albertsson AC (2012) Wood hydrolysate barriers: performance controlled via selective recovery. Biomacromolecules 13(2):466–473

    Article  CAS  PubMed  Google Scholar 

  9. Voon LK, Pang SC, Chin SF (2016) Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes. Carbohydr Polym 142:31–37

    Article  CAS  PubMed  Google Scholar 

  10. Du H, Liu C, Zhang Y, Yu G, Si C, Li B (2016) Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Ind Crop Prod 94:736–745

    Article  CAS  Google Scholar 

  11. Knill CJ, Kennedy JF (2003) Degradation of cellulose under alkaline conditions. Carbohydr Polym 51(3):281–300

    Article  CAS  Google Scholar 

  12. Haskins JF, Hogsed MJ (1950) The alkaline oxidation of cellulose. I. Mechanism of the degradative oxidation of cellulose by hydrogen peroxide in presence of alkali. J Org Chem 15(6):1264–1274

    Article  CAS  Google Scholar 

  13. Dai Y, Shao C, Piao Y, Hu H, Lu K, Zhang T, Zhang X, Jia S, Wang M, Man S (2017) The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical. Carbohydr Polym 178:34–40

  14. Huang J, He C, Wu L, Tong H (2016) Thermal degradation reaction mechanism of xylose: a DFT study. Chem Phys Lett 658:114–124

    Article  CAS  Google Scholar 

  15. Yao Y, Li Y, Liu X, Zhang X, Wang J, Yao X, Zhang S (2015) Mechanistic study on the cellulose dissolution in ionic liquids by density functional theory. Chin J Chem Eng 23(11):1894–1906

    Article  CAS  Google Scholar 

  16. Zhang M, Geng Z, Yu Y (2011) Density functional theory (DFT) study on the dehydration of cellulose. Energy Fuel 25(6):2664–2670

    Article  CAS  Google Scholar 

  17. Mayes HB, Broadbelt LJ (2012) Unraveling the reactions that unravel cellulose. J Phys Chem A 116(26):7098–7106

    Article  CAS  PubMed  Google Scholar 

  18. Fukuzumi S, Imahori H (2008) Biomimetic electron‐transfer chemistry of porphyrins and metalloporphyrins. In: Balzani V (ed) Electron transfer in chemistry. Wiley-VCH, Weinheim, pp 927–975

  19. Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta Rev Bioenerg 811(3):265–322

    Article  CAS  Google Scholar 

  20. Blumberger J (2015) Recent advances in the theory and molecular simulation of biological electron transfer reactions. Chem Rev 115(20):11191–11238

    Article  CAS  PubMed  Google Scholar 

  21. Shao Y, Gan Z, Epifanovsky E, Gilbert ATB, Wormit M, Kussmann J, Lange AW, Behn A, Deng J, Feng X, Ghosh D, Goldey M, Horn PR, Jacobson LD, Kaliman I, Khaliullin RZ, Kuś T, Landau A, Liu J, Proynov EI, Rhee YM, Richard RM, Rohrdanz MA, Steele RP, Sundstrom EJ, Woodcock HL, Zimmerman PM, Zuev D, Albrecht B, Alguire E, Austin B, Beran GJO, Bernard YA, Berquist E, Brandhorst K, Bravaya KB, Brown ST, Casanova D, Chang C-M, Chen Y, Chien SH, Closser KD, Crittenden DL, Diedenhofen M, DiStasio RA, Do H, Dutoi AD, Edgar RG, Fatehi S, Fusti-Molnar L, Ghysels A, Golubeva-Zadorozhnaya A, Gomes J, Hanson-Heine MWD, Harbach PHP, Hauser AW, Hohenstein EG, Holden ZC, Jagau T-C, Ji H, Kaduk B, Khistyaev K, Kim J, Kim J, King RA, Klunzinger P, Kosenkov D, Kowalczyk T, Krauter CM, Lao KU, Laurent AD, Lawler KV, Levchenko SV, Lin CY, Liu F, Livshits E, Lochan RC, Luenser A, Manohar P, Manzer SF, Mao S-P, Mardirossian N, Marenich AV, Maurer SA, Mayhall NJ, Neuscamman E, Oana CM, Olivares-Amaya R, O’Neill DP, Parkhill JA, Perrine TM, Peverati R, Prociuk A, Rehn DR, Rosta E, Russ NJ, Sharada SM, Sharma S, Small DW, Sodt A, Stein T, Stück D, Su Y-C, Thom AJW, Tsuchimochi T, Vanovschi V, Vogt L, Vydrov O, Wang T, Watson MA, Wenzel J, White A, Williams CF, Yang J, Yeganeh S, Yost SR, You Z-Q, Zhang IY, Zhang X, Zhao Y, Brooks BR, Chan GKL, Chipman DM, Cramer CJ, Goddard WA, Gordon MS, Hehre WJ, Klamt A, Schaefer HF, Schmidt MW, Sherrill CD, Truhlar DG, Warshel A, Xu X, Aspuru-Guzik A, Baer R, Bell AT, Besley NA, Chai J-D, Dreuw A, Dunietz BD, Furlani TR, Gwaltney SR, Hsu C-P, Jung Y, Kong J, Lambrecht DS, Liang W, Ochsenfeld C, Rassolov VA, Slipchenko LV, Subotnik JE, Van Voorhis T, Herbert JM, Krylov AI, Gill PMW, Head-Gordon M (2014) Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys 113(2):184–215

    Article  CAS  Google Scholar 

  22. Beckett D, Krukau A, Raghavachari K (2017) Charge redistribution in QM:QM ONIOM model systems: a constrained density functional theory approach. Mol Phys 115(21–22):2813–2822

    Article  CAS  Google Scholar 

  23. Kurnikov IV (2000) HARLEM, version 1.0. Department of Chemistry, University of Pittsburgh, Pittsburgh

  24. Muller JJ, Lapko A, Bourenkov G, Ruckpaul K, Heinemann U (2001) Adrenodoxin reductase-adrenodoxin complex structure suggests electron transfer path in steroid biosynthesis. J Biol Chem 276(4):2786–2789

    Article  CAS  PubMed  Google Scholar 

  25. Strittmatter E, Liers C, Ullrich R, Wachter S, Hofrichter M, Plattner DA, Piontek K (2013) First crystal structure of a fungal high-redox potential dye-decolorizing peroxidase. J Biol Chem 288(6):4095–4102

    Article  CAS  PubMed  Google Scholar 

  26. Stegmaier S, Fassler TF (2011) A bronze matryoshka: the discrete intermetalloid cluster [Sn@Cu12@Sn20]12− in the ternary phases A12Cu12Sn21 (A = Na, K). J Am Chem Soc 133(49):19758–19768

  27. Alecu IM, Marshall P (2014) Computational study of the thermochemistry of N2O5 and the kinetics of the reaction N2O5 + H2O → 2 HNO3. J Phys Chem A 118(48):11405–11416

  28. Tetianec L, Dagys M, Kulys J, Ziemys A, Meskys R (2007) Study of the reactivity of quinohemoprotein alcohol dehydrogenase with heterocycle-pentacyanoferrate(III) complexes and the electron transfer path calculations. Open Life Sci 2:502–517

  29. Geng J, Dornevil K, Davidson VL, Liu A (2013) Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG. Proc Natl Acad Sci USA 110(24):9639–9644

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 21272171) and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under grant no. U1501501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Dai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, C., Shi, K., Hua, Q. et al. Mechanism for the depolymerization of cellulose under alkaline conditions. J Mol Model 24, 124 (2018). https://doi.org/10.1007/s00894-018-3654-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3654-3

Keywords

Navigation