Skip to main content
Log in

Bonding, structural and thermodynamic analysis of dissociative adsorption of H3O+ ion onto calcite \( \left(10\overline{1}4\right) \) surface: CPMD and DFT calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We used density functional theory (DFT) and Car-Parrinello molecular dynamics (CPMD) simulation to investigate the adsorption and bond formation of hydronium ion (H3O+) onto a \( \left(10\overline{1}4\right) \) calcite surface. For surface coverage of 25% to 100%, the nature of H3O+ interaction was explored through electron density and energetics in the context of bond critical points. The adsorbate–adsorbent structure was studied by simulation of pair correlation function. The results revealed that dissociation into water molecule(s) and proton(s) complements H3O+ ion(s) adsorbtion. The H2O molecule adsorbs onto the surface via its O atom, and interacts with surface calcium in a closed-shell mode; the H+ ion makes a covalent bond to the surface oxygen while maintaining H-bonding with water. Adsorption energies were diminished by 70–90 kJ mol−1 when Obridge-bonded H+ ions transferred to the Oterminal manually. While dissociative adsorption of H3O+ ions is spontaneous at all surface coverages tested, the free energy was lowest at 75% coverage. Also, protonation of a completely pre-hydrated calcite surface leads to stronger interaction of water molecules with the surface. This unique outlook on hydrating calcite provides specific insights into biomineralization of this mineral, and helps depict further pH consequences in the field of biomaterial adsorption.

Dissociative adsorption of hydronium ion onto the surface of calcite

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ono S, Kikegawa T, Ohishi Y, Tsuchiya J (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. Am Mineral 90:667–671. https://doi.org/10.2138/am.2005.1610

    Article  CAS  Google Scholar 

  2. Ciullo PA (1996) Industrial minerals and their uses: a handbook and formulary. William Andrew, Norwich, NY

  3. Baltrusaitis J, Grassian VH (2009) Calcite surface in humid environments. Surf Sci 603:L99–L104. https://doi.org/10.1016/j.susc.2009.06.021

    Article  CAS  Google Scholar 

  4. Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elsevier, Amsterdam

  5. Ugilt H (2011) Adsorption of arsenic and phosphate onto the surface of calcite as revealed by batch experiments and surface complexation modelling. PhD Thesis, Technical University of Denmark, Department of Environmental Engineering

  6. Appelo CAJ, Postma D (2006) Geochemistry, groundwater and pollution. CRC, Boca Raton

  7. Harbaugh JW (1967) Chapter 7 carbonate oil reservoir rocks. Dev Sedimentol 9(Part A):349–398

    Article  Google Scholar 

  8. Tiab D, Donaldson EC (2004) Theory and practice of measuring reservoir rock and fluid transport properties. Gulf, Boston

  9. Aquilano D, Costa E, Pastero L (2007) Habit modification in calcite crystals induced by random and epitaxial adsorption of inorganic and organic compounds. NACE Int Corros Conf Ser 070551–0705511

  10. Perry IV TD, Cygan RT, Mitchell R (2006) Molecular models of alginic acid: interactions with calcium ions and calcite surfaces. Geochim Cosmochim Acta 70:3508–3532. https://doi.org/10.1016/j.gca.2006.04.023

    Article  CAS  Google Scholar 

  11. Gale JD, Raiteri P, van Duin ACT (2011) A reactive force field for aqueous-calcium carbonate systems. Phys Chem Chem Phys 13:16666–16679. https://doi.org/10.1039/c1cp21034c

    Article  CAS  Google Scholar 

  12. Magdans U, Torrelles X, Angermund K et al (2007) Crystalline order of a water/glycine film coadsorbed on the (104) calcite surface. Langmuir 23:4999–5004. https://doi.org/10.1021/la0636659

    Article  CAS  Google Scholar 

  13. Villegas-Jiménez A, Mucci A, Pokrovsky OS, Schott J (2009) Defining reactive sites on hydrated mineral surfaces: rhombohedral carbonate minerals. Geochim Cosmochim Acta 73:4326–4345. https://doi.org/10.1016/j.gca.2009.04.036

    Article  Google Scholar 

  14. Moore EA (2013) Computational modelling of inorganic solids. Annual reports section “A”. Inorg Chem 109:421. https://doi.org/10.1039/c3ic90023a

  15. Spagnoli D, Kerisit S, Parker SC (2006) Atomistic simulation of the free energies of dissolution of ions from flat and stepped calcite surfaces. J Cryst Growth 294:103–110. https://doi.org/10.1016/j.jcrysgro.2006.05.030

    Article  CAS  Google Scholar 

  16. de Leeuw NH, Parker SC, Rao KH (1998) Modeling the competitive adsorption of water and methanoic acid on calcite and fluorite surfaces. Langmuir 14:5900–5906. https://doi.org/10.1021/la980269k

    Article  Google Scholar 

  17. Astilleros JM, Pina CM, Fernández-Díaz L, Putnis A (2003) Metastable phenomena on calcite \( \left(10\overline{1}4\right) \) surfaces growing from (Sr2+,Ca2+) CO3 2− aqueous solutions. Chem Geol 193:93–107. https://doi.org/10.1016/S0009-2541(02)00228-0

    Article  CAS  Google Scholar 

  18. Magdans U, Gies H, Torrelles X, Rius J (2006) Investigation of the {104} surface of calcite under dry and humid atmospheric conditions with grazing incidence X-ray diffraction (GIXRD). Eur J Mineral 18:83–91. https://doi.org/10.1127/0935-1221/2006/0018-0083

    Article  CAS  Google Scholar 

  19. Pérez-Garrido C, Fernández-Díaz L, Pina CM, Prieto M (2007) In situ AFM observations of the interaction between calcite \( \left(10\overline{1}4\right) \) surfaces and cd-bearing aqueous solutions. Surf Sci 601:5499–5509

  20. Usher CR, Baltrusaitis J, Grassian VH (2007) Spatially resolved product formation in the reaction of formic scid with calcium carbonate \( \left(10\overline{1}4\right) \): the role of step density and adsorbed water-assisted ion mobility. Society 23:7039–7045

    CAS  Google Scholar 

  21. Angeles L, Nanotechnology E (2007) Calcite and dolomite dissolution rates in the context of microbe-mineral surface interactions. Geobiology 5:191–205. https://doi.org/10.1111/j.1472-4669.2007.00112.x

    Article  Google Scholar 

  22. Baltrusaitis J (2007) Experimental and theoretical studies of the adsorption of atmospherically relevant gases on metal oxide and carbonate surfaces. The University of Iowa

  23. Rode S, Oyabu N, Kobayashi K, et al. (2009) True atomic-resolution imaging of \( \left(10\overline{1}4\right) \) calcite in aqueous solution by frequency modulation atomic force microscopy. Langmuir 25:2850–2853. https://doi.org/10.1021/la803448v

  24. Hillner PE, Gratz AJ, Manne S, Hansma PK (1992) Atomic-scale imaging of calcite growth and dissolution in real time. Geology 20:359–362. https://doi.org/10.1130/0091-7613(1992)020<0359:ASIOCG>2.3.CO

    Article  CAS  Google Scholar 

  25. Ruiz-Agudo E, Di Tommaso D, Putnis CV et al (2010) Interactions between organophosphonate-bearing solutions and \( \left(10\overline{1}4\right) \) calcite surfaces: an atomic force microscopy and first-principles molecular dynamics study. Cryst Growth Des 10:3022–3035. https://doi.org/10.1021/cg1000864

    Article  CAS  Google Scholar 

  26. Jordan G, Rammensee W (1998) Dissolution rates of calcite \( \left(10\overline{1}4\right) \) obtained by scanning force microscopy: microtopography-based dissolution kinetics on surfaces with anisotropic step velocities. Geochim Cosmochim Acta 62:941–947

    Article  CAS  Google Scholar 

  27. Paquette J, Reeder RJ (1995) Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim Cosmochim Acta 59:735–749

    Article  CAS  Google Scholar 

  28. Teng HH, Dove PM (1997) Surface site-specific interactions of aspartate with calcite during dissolution: implications for biomineralization. Am Mineral 82:878–887

    Article  CAS  Google Scholar 

  29. Ruiz-Agudo E, Rodriguez-Navarro C, Luque A, et al. (2008) A TEM and 2D-XRD study of the thermal decomposition of calcite. Rev la Soc española Mineral la Soc española Mineral 9:223–224

    Google Scholar 

  30. Mitchell AC, Ferris FG (2006) Effect of strontium contaminants upon the size and solubility of calcite crystals precipitated by the bacterial hydrolysis of urea. Environ Sci Technol 40:1008–1014. https://doi.org/10.1021/es050929p

    Article  CAS  Google Scholar 

  31. McEvoy AL, Stevens F, Langford SC, Dickinson JT (2006) Scanning-induced growth on single crystal calcite with an atomic force microscope. Langmuir 22:6931–6938

    Article  CAS  Google Scholar 

  32. Wolthers M, Di Tommaso D, Du Z, de Leeuw NH (2012) Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite–water interface. Phys Chem Chem Phys 14:15145. https://doi.org/10.1039/c2cp42290e

    Article  CAS  Google Scholar 

  33. Williford RE, Baer DR, Amonette JE, Lea AS (2004) Dissolution and growth of \( \left(10\overline{1}4\right) \) calcite in flowing water: estimation of back reaction rates via kinetic Monte Carlo simulations. J Cryst Growth 262:503–518. https://doi.org/10.1016/j.jcrysgro.2003.10.015

    Article  CAS  Google Scholar 

  34. Cooper TG, de Leeuw NH (2002) Adsorption of methanoic acid onto the low-index surfaces of calcite and aragonite. Mol Simul 28:539–556. https://doi.org/10.1080/08927020290030125

    Article  CAS  Google Scholar 

  35. Lu G, Zhang X, Shao C, Yang H (2009) Molecular dynamics simulation of adsorption of an oil-water-surfactant mixture on calcite surface. Pet Sci 6:76–81

    Article  CAS  Google Scholar 

  36. Rohl AL, Wright K, Gale JD (2003) Evidence from surface phonons for the (2×1) reconstruction of the \( \left(10\overline{1}4\right) \) surface of calcite from computer simulation. Am Mineral 88:921–925. https://doi.org/10.2138/am-2003-5-622

    Article  CAS  Google Scholar 

  37. Pokrovsky OS, Schott J (2002) Surface chemistry and dissolution kinetics of divalent metal carbonates. Environ Sci Technol 36:426–432. https://doi.org/10.1021/es010925u

    Article  CAS  Google Scholar 

  38. Hamdan R, Cheng H-P (2012) Interaction of Water Layers on Calcite Surfaces. APS Meeting Abstracts 2012, American Physical Society, Washington DC

  39. Kerisit S, Cooke DJ, Spagnoli D, Parker SC (2005) Molecular dynamics simulations of the interactions between water and inorganic solids. J Mater Chem 15:1454. https://doi.org/10.1039/b415633c

    Article  CAS  Google Scholar 

  40. Spagnoli D, Cooke DJ, Kerisit S, Parker SC (2006) Molecular dynamics simulations of the interaction between the surfaces of polar solids and aqueous solutions. J Mater Chem 16:1997. https://doi.org/10.1039/b600808a

    Article  CAS  Google Scholar 

  41. Xiao S, Edwards SA, Grater F (2011) A new transferable force field for simulating the mechanics of CaCO3 crystals. J Phys Chem C 115:20067–20075. https://doi.org/10.1021/jp202743v

    Article  CAS  Google Scholar 

  42. Shen JW, Li C, Van Der Vegt NFA, Peter C (2013) Understanding the control of mineralization by polyelectrolyte additives: simulation of preferential binding to calcite surfaces. J Phys Chem C 117:6904–6913. https://doi.org/10.1021/jp402341w

    Article  CAS  Google Scholar 

  43. Heberling F, Trainor TP, Lützenkirchen J, et al. (2011) Structure and reactivity of the calcite-water interface. J Colloid Interface Sci 354:843–857

    Article  CAS  Google Scholar 

  44. Raiteri P, Gale JD (2010) Water is the key to non-classical nucleation of amorphous calcium carbonate. J Am Chem Soc 132:17623–17634. https://doi.org/10.1021/ja108508k

    Article  CAS  Google Scholar 

  45. Rahaman A, Grassian VH, Margulis CJ (2008) Dynamics of water adsorption onto a calcite surface as a function of relative humidity. J Phys Chem C 112:2109–2115. https://doi.org/10.1021/jp077594d

    Article  CAS  Google Scholar 

  46. Parker SC, de Leeuw NH, Redfern SE (1999) Atomistic simulation of oxide surfaces and their reactivity with water. Faraday Discuss 114:381–393. https://doi.org/10.1039/a903111a

    Article  CAS  Google Scholar 

  47. Cooke DJ, Elliott JA (2007) Atomistic simulations of calcite nanoparticles and their interaction with water atomistic simulations of calcite nanoparticles and their interaction. J Chem Phys 104706:104706. https://doi.org/10.1063/1.2756840

    Article  Google Scholar 

  48. Liang Y, Baer DR (1997) Anisotropic dissolution at the CaCO3 \( \left(10\overline{1}4\right) \)-water interface. Surf Sci 373:275–287. https://doi.org/10.1016/S0039-6028(96)01155-7

    Article  CAS  Google Scholar 

  49. Bruneval F, Donadio D, Parrinello M (2007) Molecular dynamics study of the solvation of calcium carbonate in water. J Phys Chem B 111:12219–12227. https://doi.org/10.1021/jp0728306

    Article  CAS  Google Scholar 

  50. Elzinga EJ, Tait CD, Reeder RJ, et al. (2004) Spectroscopic investigation of U (VI) sorption at the calcite-water interface. Geochim Cosmochim Acta 68:2437–2448

    Article  CAS  Google Scholar 

  51. Fenter P, Sturchio NC (2012) Calcite (104)-water interface structure, revisited. Geochim Cosmochim Acta 97:58–69. https://doi.org/10.1016/j.gca.2012.08.021

    Article  CAS  Google Scholar 

  52. Harding JH, Duffy DM, Sushko ML et al (2008) Computational techniques at the organic-inorganic interface in biomineralization. Chem Rev 108:4823–4854. https://doi.org/10.1021/cr078278y

    Article  CAS  Google Scholar 

  53. Wright K, Cygan RT, Slater B (2001) Structure of the \( \left(10\overline{1}4\right) \) surfaces of calcite, dolomite and magnesite under wet and dry conditions. Phys Chem Chem Phys 3:839–844. https://doi.org/10.1039/b006130l

    Article  CAS  Google Scholar 

  54. Perry IV TD, Cygan RT, Mitchell R (2007) Molecular models of a hydrated calcite mineral surface. Geochim Cosmochim Acta 71:5876–5887. https://doi.org/10.1016/j.gca.2007.08.030

    Article  CAS  Google Scholar 

  55. de Leeuw NH, Parker SC (1998) Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach. J Phys Chem B 102:2914–2922. https://doi.org/10.1021/jp973210f

    Article  Google Scholar 

  56. de Leeuw NH, Parker SC (1997) Atomistic simulation of the effect of molecular adsorption of water on the surface structure and energies of calcite surfaces. J Chem Soc Faraday Trans 93:467–475. https://doi.org/10.1039/a606573b

    Article  Google Scholar 

  57. Kerisit S, Parker SC (2004) Free energy of adsorption of water and metal ions on the \( \left(10\overline{1}4\right) \) calcite surface. J Am Chem Soc 126:10152–10161

    Article  CAS  Google Scholar 

  58. Kerisit S, Parker SC (2004) Free energy of adsorption of water and calcium on the \( \left(10\overline{1}4\right) \)calcite surface. Chem Commun 126:52–53. https://doi.org/10.1039/b311928a

    Article  Google Scholar 

  59. Kerisit S, Parker SC, Harding JH (2003) Atomistic simulation of the dissociative adsorption of water on calcite surfaces. J Phys Chem B 107:7676–7682. https://doi.org/10.1021/jp034201b

    Article  CAS  Google Scholar 

  60. Lardge JS, Duffy DM, Gillan MJ, Watkins M (2010) Ab initio simulations of the interaction between water and defects on the calcite \( \left(10\overline{1}4\right) \)surface. J Phys Chem C 114:2664–2668

    Article  CAS  Google Scholar 

  61. Cygan RT, Wright K, Fisler DK, et al. (2002) Atomistic models of carbonate minerals: bulk and surface structures, defects, and diffusion. Mol Simul 28:475–495. https://doi.org/10.1080/08927020290030099

    Article  CAS  Google Scholar 

  62. Lardge JS, Duffy DM, Gillan MJ (2009) Investigation of the interaction of water with the calcite (104) surface using ab initio simulation. J Phys Chem C 113:7207–7212

    Article  CAS  Google Scholar 

  63. Geissbühler P, Fenter P, DiMasi E, et al. (2004) Three-dimensional structure of the calcite–water interface by surface X-ray scattering. Surf Sci 573:191–203. https://doi.org/10.1016/j.susc.2004.09.036

    Article  Google Scholar 

  64. Villegas-Jiménez A, Mucci A, Whitehead MA (2009) Theoretical insights into the hydrated (10.4) calcite surface: structure, energetics, and bonding relationships. Langmuir 25:6813–6824

    Article  Google Scholar 

  65. Kerisit S, Marmier A, Parker SC (2005) Ab initio surface phase diagram of the {104} calcite surface. J Phys Chem B 109:18211–18213. https://doi.org/10.1021/jp053489x

    Article  CAS  Google Scholar 

  66. Ohnesorge F, Binnig G (1993) True atomic resolution by atomic force microscopy through repulsive and attractive forces. Science 260:1451–1456. https://doi.org/10.1126/science.260.5113.1451

    Article  CAS  Google Scholar 

  67. Geysermans P, Noguera C (2009) Advances in atomistic simulations of mineral surfaces. J Mater Chem 19:7807. https://doi.org/10.1039/b903642c

    Article  CAS  Google Scholar 

  68. Stipp SL, Hochella MF (1991) Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). Geochim Cosmochim Acta 55:1723–1736. https://doi.org/10.1016/0016-7037(91)90142-R

    Article  CAS  Google Scholar 

  69. Fenter P, Geissbühler P, Dimasi E et al (2000) Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity. Geochim Cosmochim Acta 64:1221–1228. https://doi.org/10.1016/S0016-7037(99)00403-2

    Article  CAS  Google Scholar 

  70. Frisch M, Trucks G, Schlegel H, Scuseria G et al (2009) Gaussian 09, Revision A. 02. Gaussian Inc., Wallingford, CT

  71. Hutter J, Ballone JP, Bernasconi M et al (1990) CPMD Version 3.11. 1, Max Planck Institut fuer Festkoerperforschung, Stuttgart, Germany, and IBM Zurich Research Laboratory

  72. Becke AD (1993) Density-functional thermochemistry 3. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  73. Lee C, Yang W, Parr R (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys Rev B 37:785–789

  74. Bader RFW (1994) Atoms in molecules: a quantum theory, international series of monographs on chemistry. Oxford Univ press Oxford Henkelman G, Arnaldsson a, Jónsson H a fast robust algorithm Bader Decompos Charg density. Comput Mater Sci 22:354–360

    Google Scholar 

  75. Bader R (2000) AIM 2000 program. McMaster University, Hamilton,

    Google Scholar 

  76. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  77. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc, Shawnee Mission KS Semichem Inc

  78. Sutton LE (1965) Tables of interatomic distances and configuration in molecules and ions: Supplement 1956–1959. Chemical Society, London

  79. Dolgaleva I, Gorichev I, Izotov A, Stepanov V (2005) Modeling of the effect of pH on the calcite dissolution kinetics. Theor Found Chem Eng 39:614–621. https://doi.org/10.1007/s11236-005-0125-1

    Article  CAS  Google Scholar 

  80. Koch U, Popelier PLA (1995) Characterization of CHO hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754. https://doi.org/10.1021/j100024a016

    Article  CAS  Google Scholar 

  81. Mohajeri A, Nobandegani FF (2007) Detection and evaluation of hydrogen bond strength in nucleic acid base pairs. J Phys Chem A 112:281–295. https://doi.org/10.1021/jp075992a

    Article  Google Scholar 

  82. Cremer D, Kraka E (1984) Chemical bonds without bonding electron density—does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Eng 23:627–628. https://doi.org/10.1002/anie.198406271

    Article  Google Scholar 

  83. Nakanishi W, Nakamoto T, Hayashi S, et al. (2007) Atoms-in-molecules analysis of extended hypervalent five-center, six-electron (5c-6e) C2Z2O interactions at the 1,8,9-positions of anthraquinone and 9-methoxyanthracene systems. Chem Eur J 13:255–268. https://doi.org/10.1002/chem.200600471

    Article  CAS  Google Scholar 

  84. Nakanishi W, Hayashi S, Narahara K, Bond X (2009) Polar coordinate representation of Hb(rc) versus (ℏ2/8 m)▽2ρb (rc) at BCP in AIM analysis: classification and evaluation of weak to strong interactions. J Phys Chem A 113:10050–10057. https://doi.org/10.1021/jp903622a

    Article  CAS  Google Scholar 

  85. Nakanishi W, Hayashi S (2010) Atoms-in-molecules dual functional analysis of weak to strong interactions. Curr Org Chem 14:181–197. https://doi.org/10.2174/138527210790069820

    Article  CAS  Google Scholar 

  86. Mohajeri A, Alipour M, Mousaee M (2011) Halogen-hydride interaction between Z- X (Z= CN, NC; X= F, cl, Br) and H- mg- Y (Y= H, F, Cl, Br, CH3). J Phys Chem A 115:4457–4466

    Article  CAS  Google Scholar 

  87. Sobolewski AL, Domcke W (2002) Ab initio investigation of the structure and spectroscopy of hydronium−water clusters. J Phys Chem A 106:4158–4167. https://doi.org/10.1021/jp013835k

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to the Research Council of the Shiraz University for financial support. Parallel computing facilities were granted in part by Enhanced Oil Recovery (EOR) Center of the College of Engineering. M.M.K. is thankful to Dr. Afshan Mohajeri for many bits of help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hadi Ghatee.

Electronic supplementary material

ESM 1

(DOCX 1.67 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghatee, M.H., Koleini, M.M. Bonding, structural and thermodynamic analysis of dissociative adsorption of H3O+ ion onto calcite \( \left(10\overline{1}4\right) \) surface: CPMD and DFT calculations. J Mol Model 23, 331 (2017). https://doi.org/10.1007/s00894-017-3499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3499-1

Keywords

Navigation