Skip to main content
Log in

RETRACTED ARTICLE: Simulations and experimental investigations of the competitive adsorption of CH4 and CO2 on low-rank coal vitrinite

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

This article was retracted on 03 June 2019

This article has been updated

Abstract

The mechanism for the competitive adsorption of CH4 and CO2 on coal vitrinite (DV-8, maximum vitrinite reflectance R o,max = 0.58%) was revealed through simulation and experimental methods. A saturated state was reached after absorbing 17 CH4 or 22 CO2 molecules per DV-8 molecule. The functional groups (FGs) on the surface of the vitrinite can be ranked in order of decreasing CH4 and CO2 adsorption ability as follows: [−CH3] > [−C=O] > [−C–O–C–] > [−COOH] and [−C–O–C–] > [−C=O] > [−CH3] > [−COOH]. CH4 and CO2 distributed as aggregations and they were both adsorbed at the same sites on vitrinite, indicating that CO2 can replace CH4 by occupying the main adsorption sites for CH4–vitrinite. High temperatures are not conducive to the adsorption of CH4 and CO2 on vitrinite. According to the results of density functional theory (DFT) and grand canonical Monte Carlo (GCMC) calculations, vitrinite has a higher adsorption capacity for CO2 than for CH4, regardless of whether a single-component or binary adsorbate is considered. The equivalent adsorption heat (EAH) of CO2–vitrinite (23.02–23.17) is higher than that of CH4–vitrinite (9.04–9.40 kJ/mol). The EAH of CO2–vitrinite decreases more rapidly with increasing temperature than the EAH of CH4–vitrinite does, indicating in turn that the CO2–vitrinite bond weakens more quickly with increasing temperature than the CH4–vitrinite bond does. Simulation data were found to be in good accord with the corresponding experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3a–c
Fig. 4
Fig. 5a–d
Fig. 6a–d
Fig. 7a–c
Fig. 8a–b
Fig. 9a–b
Fig. 10a–c
Fig. 11a–c
Fig. 12a–b
Fig. 13a–c

Similar content being viewed by others

Change history

  • 03 June 2019

    The authors have retracted this article [1] because it significantly overlaps with a previously published article [2]. All authors agree with this retraction.

References

  1. Tian H, Li T, Zhang T, Xiao X (2016) Int J Coal Geol 156:36–49

  2. Kang Y, Huang F, You L, Li X, Gao B (2016) Int J Coal Geol 154:123–135

  3. An H, Wei XR, Wang GX, Massarotto P, Wang FY, Rudolph V, Golding SD (2015) Int J Coal Geol 152:15–24

  4. Busch A, Gensterblum Y (2011) Int J Coal Geol 87(2):49–71

  5. Cui XJ, Bustin RM, Dipple G (2004) Fuel 83:293–303

    Article  CAS  Google Scholar 

  6. Qiu NX, Xue Y, Guo Y, Sun WJ, Chu W (2012) Comput Theor Chem 992:37–47

  7. Liu XQ, Xue Y, Tian ZY, Mo JJ, Qiu NX, Chu W, Xie HP (2013) Appl Surf Sci 285:190–197

  8. Domazetis G, Raoarun M, James BD (2007) Energy Fuel 21:2531–2542

  9. Liu J, Qu WQ, Zheng CG (2010) Energy Fuel 24:4425–4429

  10. Xua H, Chu W, Huang X, Sun WJ, Jiang CF, Liu ZQ (2016) Appl Surf Sci 375:196–206

  11. Liu YY, Wilcox J (2011) Environ Sci Technol 45:809–814

  12. Zhao Y, Jiang C, Chu W (2012) Int J Min Sci Technol 22(6):757–761

  13. Thierfelder C, Witte M, Blankenburg S, Rauls E, Schmidt WG (2011) Surf Sci 605(7):746–749

  14. Ricca A, Bauschlicher CW (2006) Chem Phys 324(2):455–458

  15. Rubes M, Kysilka J, Nachtigall P, Bludský O (2010) Phys Chem Chem Phys 12(24):6438–6444

  16. Liu XQ, Tian ZY, Chu W, Xue Y (2014) Acta Phys Chim Sin 30(2):251–256

  17. Liu F, Chu W, Sun W (2012) J Nat Gas Chem 21:708–712

  18. Goodman AL, Campus LM, Schroeder KT (2005) Energy Fuel 19(2):471–476

  19. Goodman AL, Favors RN, Larsen JW (2006) Energy Fuel 20(6):2537–2543

  20. Goodman AL (2009) Energy Fuel 23(2):1101–1106

  21. Hu H, Li X, Fang Z, Wei N, Li Q (2010) J Coal Sci Eng 7:58–63

    Google Scholar 

  22. Sun PD (2001) J Coal Sci Eng 7:58-63

  23. White CM, Smith DH, Jones KL, Goodman AL, Jikich SA, LaCount RB, DuBose SB, Ozdemir E, Morsi BI, Schroeder KT (2005) Energy Fuel 19(3):659–724

  24. Nishino J (2001) Fuel 80(5):757–764

    Article  CAS  Google Scholar 

  25. Larsen JW, Flowers RA, Hall PJ, Carlson G (1997) Energy Fuel 11(5):998-1002

  26. Larsen JW (2004) Int J Coal Geol 57(1):63-70

  27. Xiang JH, Zeng FG, Liang HZ, Li B, Song XX (2014) Sci Chi Earth Sci 57(8):1749–1759

  28. Yu CF, Chen KL, Cheng HC, Chen WH (2016) Comput Mater Sci 117:127–138

  29. Mcnamara JP, Sharma R, Vincent MA, Hillier IH, Morgado CA (2008) Phys Chem Chem Phys 10(1):128–135

  30. Lithoxoos GP, Labropoulos A, Peristeras LD, Kanellopoulos N, Samios J, Economou IG (2010) J Supercrit Fluid 55(2):510–523

  31. Kowalczyk P, Tanaka H, Kaneko K, Do DD (2005) Langmuir 21(12):5639–5646

    Article  CAS  Google Scholar 

  32. Cao DP, Gao GT, Wang WC (2000) J Chem Ind Eng 1:23–30

  33. Li X, Lin B, Xu H (2014) Int J Min Sci Technol 24(1):17–22

  34. Yu S, Yan-ming Z, Wu L (2017) Appl Surf Sci 396:291–302

  35. Zhao Y, Feng Y, Zhang X (2016) Fuel 165:19–27

    Article  CAS  Google Scholar 

  36. Valentini P, Schwartzentruber TE, Cozmuta I (2011) Surf Sci 605(23):1941–1950

  37. Carlson GA (1992) Energy Fuel 6(6):771–778

  38. Nakamura K (1993) Energy Fuel 7(3):347–350

  39. Rogel E, Carbognani L (2003) Energy Fuel 17(2):378–386

  40. Delley B (2000) J Chem Phys 113(18):7756–7764

  41. Grimme S, Ehrlich S, Goerigk L (2011) J Comput Chem 32(7):1456–1465

  42. Xu H, Chu W, Huang X, Xia H, Sun W, Jiang C, Liu Z (2016) Appl Surf Sci 375:196–206

  43. Alonso JA (2000) Chem Rec 100(2):637–678

  44. Mark SS, Andrew ED (1992) J Chem Phys 97(5):3386–3398

  45. Reuse FA, Khanna SN (1995) Chem Phys Lett 234(1–3):77–81

  46. Castro M, Jamorski C, Salahub DR (1997) Chem Phys Lett 271(1–3):133–142

  47. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54(23):16533

  48. Grimme S (2006) J Comput Chem 27(15):1787–1799

  49. Inada Y, Orita H (2008) J Comput Chem 29(2):225–232

  50. Tambach TJ, Mathews JP, van Bergen F (2009) Energy Fuel 23(10):4845–4847

  51. Saghafi A, Faiz M, Roberts D (2007) Int J Coal Geol 70(1):240–254

  52. Einstein A (1905) Ann Phys Berl 17:549–560

  53. Li W, Zhu Y (2014) Energy Fuel 28(6):3645–3654

  54. Li W, Zhu Y (2014) Energ Source Part A 36(15):1650–1658

  55. Cosoli P, Ferrone M, Pricl S, Fermeglia M (2008) Chem Eng J 145(1):86–92

  56. Li W, Zhu YM, Wang G, Wang Y, Liu Y (2015) J Mol Model 21(8):188

  57. Kaplan IG (1986) Theory of molecular interactions. New York: Elsevier 1986:178-251

  58. Liu SS, Meng ZP (2015) J China Coal Soc 40(6):1422–1427

  59. Hao S, Wen J, Yu X, Chu W (2013) Appl Surf Sci 264:433–442

  60. Zhang S, Sang S, Yang Z (2009) J China Univ Min Technol 5:022

  61. Crosdale PJ, Beamish BB, Valix M (1998) Int J Coal Geol 35(1):147–158

  62. Jiang WP, Cui YJ, Zhang Q, Zhong L, Hui LY (2007) J China Coal Soc 3:015

  63. Chen CG, Wei XW, Xian XF (2000) J Chongqing Uni (Nat Sci Ed) 23:77–79

  64. Hu H, Du L, Xing Y, Li X (2017) Fuel 187:220–228

    Article  CAS  Google Scholar 

  65. Haus JW, Kehr KW (1987) Phys Rep 150(5):263–406

  66. Baumgärtner A, Moon M (1989) Eur Phys Lett 9(3):203

  67. Jing W (2010) Molecular simulation of adsorption and diffusion of methane in deformed coal. Taiyuan University of Technology Press: 61-62

  68. Zeng YY, Zhang BJ (2008) Acta Phys Chim Sin 24(8):1493–1497

Download references

Acknowledgements

The authors greatly appreciate Prof. F.G. Zeng (Key Laboratory of Coal Science and Technology of Ministry of Education, Taiyuan University of Technology, Shanxi Province), who helped us to access the Materials Studio software package. This work was supported by the National Natural Science Foundation of China (nos. 41430317, 41072117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Yu.

Additional information

The authors have retracted this article because it significantly overlaps with a previously published article. All authors agree with this retraction.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Bo, J. & Jiahong, L. RETRACTED ARTICLE: Simulations and experimental investigations of the competitive adsorption of CH4 and CO2 on low-rank coal vitrinite. J Mol Model 23, 280 (2017). https://doi.org/10.1007/s00894-017-3442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3442-5

Keywords

Navigation