Skip to main content
Log in

A DFT study of hydrogen and methane activation by B(C6F5)3/P(t-Bu)3 and Al(C6F5)3/P(t-Bu)3 frustrated Lewis pairs

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This contribution presents a computational study aimed at understanding factors affecting barriers associated with the activation of the H–H bond in molecular hydrogen and the H–CH3 bond in methane mediated by intermolecular Frustrated Lewis Pairs (FLPs). The classical phosphine P(t-Bu)3 Lewis base in conjunction with two Lewis acids, B(C6F5)3 and Al(C6F5)3, were used as representative models of intermolecular FLPs. DFT calculations were performed using the dispersion corrected ωB97x-D functional, including toluene as a solvent through the PCM-SMD implicit solvent scheme. The results show that, in all cases, the activation barrier is larger for methane than for hydrogen. We conclude that the observed increase in the barrier for methane activation is due primarily to a larger distortion in methane compared to hydrogen to reach the transition state. Second, a large distortion of the Lewis acid to attain a better interaction with the σ-bond in methane was observed. Finally, we found that, for both hydrogen and methane activation, a considerable reduction in the free energy activation barrier is observed when the Lewis acid Al(C6F5)3 is used. From the results extracted in this study, we propose the use of alanes acids as good candidates for methane activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a,b
Fig. 4

Similar content being viewed by others

References

  1. Welch GC, San Juan RR, Masuda JD, Stephan DW (2006) Reversible, metal-free hydrogen activation. Science 314:1124–1126

    Article  CAS  Google Scholar 

  2. Stephan DW, Erker G (2010) Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed 49:46–76

    Article  CAS  Google Scholar 

  3. Stephan DW, Erker G (2015) Frustrated Lewis pair chemistry: development and perspectives. Angew Chem Int Ed 54:6400–6441

    Article  CAS  Google Scholar 

  4. Stephan DW (2015) Frustrated Lewis pairs: from concept to catalysis. Acc Chem Res 48:306–316

    Article  CAS  Google Scholar 

  5. Stephan DW, Erker G (2014) Frustrated Lewis pair chemistry of carbon, nitrogen and sulfur oxides. Chem Sci 5:2625–2264

    Article  CAS  Google Scholar 

  6. Stephan DW (2015) Perspective: frustrated Lewis pairs. J Am Chem Soc 137:10018–10032

    Article  CAS  Google Scholar 

  7. Rokob TA, Hamza A, Stirling A, Soos T, Papai I (2008) Turning frustration into bond activation: a theoretical mechanistic study on heterolytic hydrogen splitting by frustrated Lewis pairs. Angew Chem Int Ed 47:2435–2438

    Article  CAS  Google Scholar 

  8. Rokob TA, Hamza A, Papai I (2009) Rationalizing the reactivity of frustrated Lewis pairs: thermodynamics of H2 activation and the role of acid−base properties. J Am Chem Soc 131:10701–10710

    Article  CAS  Google Scholar 

  9. Momming CM, Fromel S, Kehr G, Frohlich R, Grimme S, Erker G (2009) Reactions of an intramolecular frustrated Lewis pair with unsaturated substrates: evidence for a concerted olefin addition reaction. J Am Chem Soc 131:12280–12289

    Article  Google Scholar 

  10. Grimme S, Kruse H, Goerigk L, Erker G (2010) The mechanism of dihydrogen activation by frustrated Lewis pairs revisited. Angew Chem Int Ed 49:1402–1405

    Article  CAS  Google Scholar 

  11. Schimmer B, Grimme S (2010) Electric field induced activation of H2-can DFT do the job? Chem Commun 46:7942–7944

    Article  Google Scholar 

  12. Rokob TA, Bako I, Stirling A, Hamza A, Papai I (2013) Reactivity models of hydrogen activation by frustrated Lewis pairs: synergistic electron transfers or polarization by electric field? J Am Chem Soc 135:4425–4437

    Article  CAS  Google Scholar 

  13. Zeonjuk LL, Vankova N, Mavrandonakis A, Heine T, Roschenthaler GV, Eicher J (2013) On the mechanism of hydrogen activation by frustrated Lewis pairs. Chem Eur J 19:17413–17424

    Article  CAS  Google Scholar 

  14. Rokob TA, Papai I (2012) Hydrogen activation by frustrated lewis pairs: insights from computational studies. Top Curr Chem 332:157–211

    Article  Google Scholar 

  15. Skara G, Pinter B, Top J, Geerlings F, De Proft F, De Vleeschouwer F (2015) Conceptual quantum chemical analysis of bonding and noncovalent interactions in the formation of frustrated Lewis pairs. Chem Eur J 21:5510–5519

    Article  CAS  Google Scholar 

  16. Becerra M, Real-Enriquez M, Espinosa-Gavilanes C, Zambrano CH, Almeida R, Torres FJ, Rincon L (2016) On the thermodynamic stability of the intermolecular association between Lewis acids and Lewis bases: a DFT study. Theor Chem Accounts 135:77

    Article  Google Scholar 

  17. Dureen MA, Stephan DW (2009) Terminal alkyne activation by frustrated and classical acid/phosphine pairs. J Am Chem Soc 131:8396–8397

    Article  CAS  Google Scholar 

  18. Jiang C, Blacque O, Berke H (2010) Activation of terminal alkynes by frustrated Lewis pairs. Organometallics 29:125–133

    Article  CAS  Google Scholar 

  19. Menard G, Stephan DW (2012) C-H bond activation of isobutylene using frustrated Lewis pairs: aluminium and boron. Angew Chem Int Ed 51:4409–4412

    Article  CAS  Google Scholar 

  20. Gunsalus NJ, Koppaka A, Park SH, Bischof SM, Hashiguchi BG, Periana RA (2017) Homogeneous functionalization of methane. Chem Rev 117(13):8521–8573. doi:10.1021/acs.chemrev.6b00739

  21. Li H, Zhao L, Lu G, Mo Y, Wang Z-X (2010) Insight into the relative reactivity of "frustrated Lewis pairs" and stable carbenes in activating H2 and CH4: a comparative computational study. Phys Chem Chem Phys 12:5268–5275

    Article  CAS  Google Scholar 

  22. Lu G, Zhao L, Li H, Huang F, Wang Z-X (2010) Reversible Heterolytic methane activation of metal-free closed-Shell molecules: a computational proof-of-principle study. Eur J Inorg Chem:2254–2260

  23. Ma G, Li ZH (2016) Methane activation by metal-free Lewis acid centers only—a computational design and mechanism study. Phys Chem Chem Phys 18:11539–11549

    Article  CAS  Google Scholar 

  24. Fromel S, Daniliuc CG, Bannwarth C, Grimme S, Bussmann K, Kehr G, Erker G (2016) Indirect synthesis of a pair of formal methane activation products at a phosphane/borane frustrated Lewis pair. Dalton Trans 45:19230–19233

    Article  Google Scholar 

  25. Toro-Labbe A (1999) Characterization of chemical reactions from the profiles of energy, chemical potential, and hardness. J Phys Chem A 103:4398–4403

    Article  CAS  Google Scholar 

  26. Toro-Labbe A, Gutierrez-Oliva S, Murray JS, Politzer PA (2007) A new perspective on chemical and physical processes: the reaction force. Mol Phys 105:2619–2625

    Article  CAS  Google Scholar 

  27. Politzer P, Reimers JR, Murray JS, Toro-Labbe A (2010) Reaction force analysis and its link to Diabatic analysis: a unifying approach to analyzing chemical reaction. J Phys Chem Lett 1:2858–2862

    Article  CAS  Google Scholar 

  28. Politzer P, Toro-Labbe A, Gutierrez-Oliva S, Murray JS (2012) Perspectives on the reaction force. Adv Quantum Chem 64:189

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  30. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  31. Chai J-D, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106

    Article  Google Scholar 

  32. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  33. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods XX A basis set for correlated wave functions. J Chem Phys 72:650–654

  34. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys 72:5639–5640

    Article  CAS  Google Scholar 

  35. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  36. Zhao Y, Truhlar DG (2011) Density functional theory for reaction energies: test of meta and hybrid meta functionals, range-separated functionals, and other high-performance functionals. J Chem Theory Comput 7:669–676

    Article  CAS  Google Scholar 

  37. Zhao Y, Truhlar DG (2005) Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J Phys Chem A 109:5656–5667

    Article  CAS  Google Scholar 

  38. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  39. Schlegel HB (1987) Optimization of equilibrium geometries and transition structures. Adv Chem Phys 67:249–283

    CAS  Google Scholar 

  40. Hratchian HP, Schlegel HB (2004) Accurate reaction paths using a hessian based predictor–corrector integrator. J Chem Phys 120:9918–9924

    Article  CAS  Google Scholar 

  41. Hratchian HP, Schlegel HB (2005) Using hessian updating to increase the efficiency of a hessian based predictor-corrector reaction path following method. J Chem Theo Comp 1:61–69

    Article  CAS  Google Scholar 

  42. Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  43. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  44. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  45. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  46. Scalmani G, Frisch MJ (2010) Continuous surface charge polarizable continuum models of solvation. I. General formalism. J Chem Phys 132:114110

    Article  Google Scholar 

  47. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed using the resources of the Universidad San Francisco de Quito’s High Performance Computing system (HPC-USFQ). N.V.-E. thanks Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) for a graduate fellowship. L.R. and J.M. would like to thank USFQ’s chancellor and collaboration grants program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Rincon.

Additional information

This paper belongs to Topical Collection QUITEL 2016

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villegas-Escobar, N., Toro-Labbé, A., Becerra, M. et al. A DFT study of hydrogen and methane activation by B(C6F5)3/P(t-Bu)3 and Al(C6F5)3/P(t-Bu)3 frustrated Lewis pairs. J Mol Model 23, 234 (2017). https://doi.org/10.1007/s00894-017-3404-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3404-y

Keywords

Navigation