Skip to main content
Log in

Why does β-cyclodextrin prefer to bind nucleotides with an adenine base rather than other 2′-deoxyribonucleoside 5′-monophosphates?

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

β-Cyclodextrin (β-CD), which resides in the α-hemolysin (αHL) protein pore, can act as a molecular adapter in single-molecule exonuclease DNA sequencing approaches, where the different nucleotide binding behavior of β-CD is crucial for base discrimination. In the present contribution, the inclusion modes of β-CD towards four 2′-deoxyribonucleoside 5′-monophosphates (dNMPs) were investigated using quantum mechanics (QM) calculations. The calculated binding energy suggests that the binding affinity of dAMP to β-CD are highest among all the dNMPs in solution, in agreement with experimental results. Geometry analysis shows that β-CD in the dAMP complex undergoes a small conformational change, and weak interaction analysis indicates that there are small steric repulsion regions in β-CD. These results suggest that β-CD has lower geometric deformation energy in complexation with dAMP. Furthermore, topological analysis and weak interaction analysis suggest that the number and strength of intermolecular hydrogen bonds and van der Waals interactions are critical to dAMP binding, and they both make favorable contributions to the lower interaction energy. This work reveals the reason why β-CD prefers to bind dAMP rather than other dNMPs, while opening exciting perspectives for the design of novel β-CD-based molecular adapters in the single-molecule exonuclease method of sequencing DNA.

The binding affinity of β-cyclodextrin towards four 2′-deoxyribonucleoside 5′-monophosphates was investigated using quantum mechanics calculations

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402

    Article  CAS  Google Scholar 

  2. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  Google Scholar 

  3. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  Google Scholar 

  4. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Ventra MD, Garaj S, Hibbs A, Huang XH, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  CAS  Google Scholar 

  5. Deamer D (2010) Nanopore analysis of nucleic acids bound to exonucleases and polymerases. Annu Rev Biophys 39:79–90

    Article  CAS  Google Scholar 

  6. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624

    Article  CAS  Google Scholar 

  7. Deamer DW, Branton D (2002) Characterization of nucleic acids by nanopore analysis. Acc Chem Res 35:817–825

    Article  CAS  Google Scholar 

  8. Howorkaa S, Siwyb Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38:2360–2384

    Article  Google Scholar 

  9. Reiner JE, Balijepalli A, Robertson JWF, Campbell J, Suehle J, Kasianowicz JJ (2012) Disease detection and management via single nanopore-based sensors. Chem Rev 112:6431–6451

    Article  CAS  Google Scholar 

  10. Ying YL, Zhang JJ, Gao R, Long YT (2013) Nanopore-based sequencing and detection of nucleic acids. Angew Chem Int Ed 52:13154–13161

    Article  CAS  Google Scholar 

  11. Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    Article  CAS  Google Scholar 

  12. Astier Y, Braha O, Bayley H (2006) Toward single molecule DNA sequencing: direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter. J Am Chem Soc 128:1705–1710

    Article  CAS  Google Scholar 

  13. Ayub M, Stoddart D, Bayley H (2015) Nucleobase recognition by truncated α-hemolysin pores. ACS Nano 9:7895–7903

    Article  CAS  Google Scholar 

  14. Ayub M, Hardwick SW, Luisi BF, Bayley H (2013) Nanopore-based identification of individual nucleotides for direct RNA sequencing. Nano Lett 13:6144–6150

    Article  CAS  Google Scholar 

  15. Gu LQ, Braha O, Conlan S, Cheley S, Bayley H (1999) Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398:686–690

    Article  CAS  Google Scholar 

  16. Wu HC, Astier Y, Maglia G, Mikhailova E, Bayley H (2007) Protein nanopores with covalently attached molecular adapters. J Am Chem Soc 129:16142–16148

    Article  CAS  Google Scholar 

  17. Wu HC, Bayley H (2008) Single-molecule detection of nitrogen mustards by covalent reaction within a protein nanopore. J Am Chem Soc 130:6813–6819

    Article  CAS  Google Scholar 

  18. Li WW, Claridge TDW, Li QH, Wormald MR, Davis BG, Bayley H (2011) Tuning the cavity of cyclodextrins: altered sugar adaptors in protein pores. J Am Chem Soc 133:1987–2001

    Article  CAS  Google Scholar 

  19. Gu LQ, Serra MD, Vincent JB, Vigh G, Cheley S, Braha O, Bayley H (2000) Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters. Proc Natl Acad Sci USA 97:3959–3964

    Article  CAS  Google Scholar 

  20. Gu LQ, Bayley H (2000) Interaction of the noncovalent molecular adapter, β-cyclodextrin, with the staphylococcal α-hemolysin pore. Biophys J 79:1967–1975

    Article  CAS  Google Scholar 

  21. Gu LQ, Cheley S, Bayley H (2001) Prolonged residence time of a noncovalent molecular adapter, β-cyclodextrin, within the lumen of mutant α-hemolysin pores. J Gen Physiol 118:481–493

    Article  CAS  Google Scholar 

  22. Banerjee A, Mikhailova E, Cheley S, Gu LQ, Montoya M, Nagaoka Y, Gouaux E, Bayley H (2010) Molecular bases of cyclodextrin adapter interactions with engineered protein nanopores. Proc Natl Acad Sci USA 107:8165–8170

    Article  CAS  Google Scholar 

  23. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753

    Article  CAS  Google Scholar 

  24. Song LX, Bai L, Xu XM, He J, Pan SZ (2009) Inclusion complexation, encapsulation interaction and inclusion number in cyclodextrin chemistry. Coord Chem Rev 253:1276–1284

    Article  CAS  Google Scholar 

  25. Chen GS, Jiang M (2011) Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev 40:2254–2266

    Article  CAS  Google Scholar 

  26. Zhang JX, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65:1215–1233

    Article  CAS  Google Scholar 

  27. Harada A, Takashima Y, Nakahata M (2014) Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc Chem Res 47:2128–2140

    Article  CAS  Google Scholar 

  28. Bonnet V, Gervaise C, Djedaıni-Pilard F, Furlan A, Sarazin C (2015) Cyclodextrin nanoassemblies: a promising tool for drug delivery. Drug Discov Today 20:1120–1126

    Article  CAS  Google Scholar 

  29. Hoffman JL (1970) Chromatography of nucleic acid components on cyclodextrin gels. Anal Biochem 33:209–217

    Article  CAS  Google Scholar 

  30. Hoffmant JL, Bock RM (1970) The interaction of cyclodextrins with nucleic acids. A study of secondary structure in three transfer ribonucleic acids. Biochemistry 9:3542–3550

    Article  Google Scholar 

  31. Formoso C (1973) The interaction of β-cyclodextrin with nucleic acid monomer units. Biochem Biophys Res Commun 50:999–1005

    Article  CAS  Google Scholar 

  32. Hoffmant JL (1973) Chromatography of nucleic acids on cross-linked cyciodextrin gels having inclusion-forming capacity. J Macromol Sci A Chem 7:1147–1157

    Article  Google Scholar 

  33. Bae JR, Lee CW (2009) Low-frequency ultrasonic relaxation of β-cyclodextrin and adenosine 5’-monophosphate in aqueous solution. Bull Korean Chem Soc 30:145–148

    Article  CAS  Google Scholar 

  34. Kondo M, Nishikawa S (2007) Inclusion kinetics of a nucleotide into a cyclodextrin cavity by means of ultrasonic relaxation. J Phys Chem B 111:13451–13454

    Article  CAS  Google Scholar 

  35. Eliseev AV, Schneider HJ (1994) Molecular recognition of nucleotides, nucleosides, and sugars by aminocyclodextrins. J Am Chem Soc 116:6081–6088

    Article  CAS  Google Scholar 

  36. Eliseev AV, Schneider HJ (1993) Aminocyclodextrins as selective hosts with several binding sites for nucleotides. Angew Chem Int Ed Engl 32:1331–1333

    Article  Google Scholar 

  37. Britz-McKibbin P, Chen DDY (1997) Prediction of the migration behavior of analytes in capillary electrophoresis based on three fundamental parameters. J Chromatogr A 781:23–34

    Article  CAS  Google Scholar 

  38. Lindner K, Saenger W (1982) Crystal and molecular structure of cyclohepta-amylose dodecahydrate. Carbohydr Res 99:103–115

    Article  CAS  Google Scholar 

  39. Dennington R, Keith T, Millam J (2009) GaussView, version 5. Semichem Inc., Shawnee Mission

    Google Scholar 

  40. Chai JD, Head-Gordon M (2008) Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 128:084106

    Article  Google Scholar 

  41. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  42. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  43. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  44. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  45. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  46. Lu T, Chen FW (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  47. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang WT (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  48. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision D.01. Gaussian, Inc, Wallingford

    Google Scholar 

  50. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  51. Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J (2004) Properties of the C-H⋯H dihydrogen bond: an ab initio and topological analysis. J Phys Chem A 108:10865–10872

    Article  CAS  Google Scholar 

  52. Grabowski SJ (2011) What is the covalency of hydrogen bonding ? Chem Rev 111:2597–2625

    Article  CAS  Google Scholar 

  53. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  54. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285:170–173

    Article  CAS  Google Scholar 

  55. Raghavachari K, Saha A (2015) Accurate composite and fragment-based quantum chemical models for large molecules. Chem Rev 115:5643–5677

    Article  CAS  Google Scholar 

  56. Saha A, Raghavachari K (2015) Analysis of different fragmentation strategies on a variety of large peptides: implementation of a low level of theory in fragment-based methods can be a crucial factor. J Chem Theory Comput 11:2012–2023

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Sciences Foundation of Shandong Province, China (No. ZR2013BL014, No. ZR2016BQ33 and No. ZR2012CL01), the Science and Technology Development Project of Taian City, China (No. 2016GX1023), the Taishan Medical University (No. 2015GCC20) and the Taishan University (No. Y-01-2014013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Liu, J., Wang, T. et al. Why does β-cyclodextrin prefer to bind nucleotides with an adenine base rather than other 2′-deoxyribonucleoside 5′-monophosphates?. J Mol Model 23, 149 (2017). https://doi.org/10.1007/s00894-017-3325-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3325-9

Keywords

Navigation