Skip to main content
Log in

Quantum isotope effects on the H+Li2 reaction

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This work presents a detailed study concerning the quantum isotope effects on the H+Li\(_{2}\rightarrow \text {LiH}+\text {Li}\) reaction, when the hydrogen is replaced by muonium, deuterium, and tritium. To verify such effects on these isotope reactions, it was applied an accurate time-independent quantum scattering approach to determine the dynamic properties, such as state-to-state probabilities as a function of the total energy, the product energetic distribution, and the contribution of the ro-vibrational excitation on the reaction probabilities. From the obtained results, it was possible to observe a significant increase on the promotion of the H+Li2 reaction when hydrogen is replaced by tritium. This fact shows the importance of the isotopic substitution in the making and breaking of the chemical bonds in the reactive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fleming DG, Manz J, Sato K, Takayanagi T (2014) Fundamental change in the nature of chemical bonding by isotopic substitution. Angew Chem Int Ed 53:13706–13709

    Article  CAS  Google Scholar 

  2. Kaye JA (1992) Isotope effects in gas-phase chemical reactions and photodissociation processes. ACS Symposium series, vol 502. American Chemical Society, Washington, DC, pp 1–15

  3. Kohen A, Limbach HH (2006) Isotope effects in chemistry and biology. CRC, Boca Raton

  4. Urey HC, Brickwedde FG, Murphy GM (1932) A hydrogen isotope of mass 2. Phys Rev 39:164–165

    Article  CAS  Google Scholar 

  5. Baer S, Fleming D, Arseneau D, Senba M, Gonzalez A (1992) Kinetic isotope effects in gasphase muonium reactions. ACS Symposium Series, vol 502. American Chemical Society, Washington, DC, pp 111–137

  6. Fleming DG, Senba M (1992) Perspectives in mesons science. Amsterdam, North Holland, pp 219–260

    Google Scholar 

  7. Cardelino BH, Eberhardt WH, Borkman RF (1986) Ab initio SCF calculation on LinHm molecules and cations with four or less atoms. J Chem Phys 84:3230–3242

    Article  CAS  Google Scholar 

  8. England WB, Sabelli NH, Wahl AC (1975) A theoretical study of Li2H. I. Basis set and computational survey of excited states and possible reaction paths. J Chem Phys 63:4596–4605

    Article  CAS  Google Scholar 

  9. Talbi D, Saxon RP (1989) Low-lying states of Li3H: Is there an ion-pair minimum? Chem Phys Lett 157:419–425

    Article  CAS  Google Scholar 

  10. Song Y-Z, Li Y-Q, Gao S-B, Meng Q-T (2014) Accurate ab initio-based DMBE potential energy surface for HLi2(X 2A) via scaling of the external correlation. Eur Phys J D 68:3

    Article  Google Scholar 

  11. Gao S, Zhang J, Song Y, Meng Q -T (2015) Cross sections for the vibrational inhibition at low collision energies for the reaction H+Li2 (X\(^{1}{\Sigma }_g^{+}\)) →Li+LiH(X 1Σ+). Eur Phys J D 69:111

    Article  Google Scholar 

  12. Gao S, Zhang L, Song Y, Meng Q (2016) Coriolis coupling effects in the H+Li2 (X\(^{1}{\Sigma }_{g}^{+}\)) →LiH(X 1Σ+)+Li reaction: A time-dependent wave packet investigation. Chem Phys Lett 651:233–237

    Article  CAS  Google Scholar 

  13. Shukla CP, Sathyamurthy N, Khuller IP (1987) On the possibility of vibrational inhibition in a bimolecular exchange reaction. J Chem Phys 87:3251

    Article  CAS  Google Scholar 

  14. Kim SK, Jeoung SC, Tan AL, Herschbach DR (1991) Vibrational and rotational inhibition of the H+Li2 bimolecular exchange reaction. J Chem Phys 95:3854–3856

    Article  CAS  Google Scholar 

  15. Guosen Y, Hui X, Daiqian X (1997) Ab initio potential energy surface and excited vibrational states for the electronic ground state of Li2H. Sci China 40:342–347

    Article  Google Scholar 

  16. Siegbahn P, Schaefer IIIHF (1975) Potential energy surfaces for H+Li\(_{2}\rightarrow \)LiH+Li ground state surface from large scale configuration interaction. J Chem Phys 62:3488–3495

    Article  CAS  Google Scholar 

  17. He X, Zhang P, Duan Z-X (2016) Isotopic effect on the dynamics of the H/D+LiH/LiD reactions isotopic effect in the H+LiH system. Comp Theor Chem 1084:188–195

    Article  CAS  Google Scholar 

  18. Verzin B, Dugourd P h, Rayane D, Labastie P, Broyer M (1993) First observation of an excited state of Li2H. Chem Phys Lett 202:209–215

    Article  Google Scholar 

  19. Antoine R, Dugourd P h, Rayane D, Allouche AR, Aubert-Frecon M, Broyer M (1996) On the optical absorption spectrum of Li2H. Chem Phys Lett 261:670–676

    Article  CAS  Google Scholar 

  20. Wu CH, Ihle HR (1977) Binding energies of Li2H and Li\(_{2}\textit {H}^{+}\) and the ionization potential of Li2H. J Chem Phys 66:4356–4359

    Article  CAS  Google Scholar 

  21. Skouteris D, Castillo JF, Manolopoulos DE (2000) ABC: A quantum reactive scattering program. Comput Phys Commun 133:128–135

    Article  CAS  Google Scholar 

  22. Maniero AM, Acioli PH, Silva GM, Gargano R (2010) Theoretical calculations of a new potential energy surface for the H+Li2 reaction. Chem Phys Lett 490:123–126

    Article  CAS  Google Scholar 

  23. Maniero AM, Acioli PH (2005) Full configuration interaction pseudopotential determination of the ground-state potential energy curves of Li2 and LiH. Int J Quantum Chem 103:711– 717

    Article  CAS  Google Scholar 

  24. Vila HVR, Leal LA, Martins JBL, Skouteris D, Silva GM, Gargano R (2012) The H+Li2 bimolecular exchange reaction: Dynamical and kinetical properties at J=0. J Chem Phys 136:134319–134319-6

    Article  Google Scholar 

  25. Da Cunha W F, Leal L A, Da Cunha T F, Silva G M, Martins J B L, Gargano R (2014) A detailed reactive cross section study of X+Li\(_{2}\rightarrow \)Li+LiX, with X=H, D, T, and Mu. J Mol Model 20:2315–2315-9

    Google Scholar 

  26. Pack RT, Parker GA (1987) Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates. Theory J Chem Phys 87:3888–3921

    CAS  Google Scholar 

  27. Manolopoulos DE (1986) An improved log derivative method for inelastic scattering. J Chem Phys 85:6425–6429

    Article  CAS  Google Scholar 

  28. Schatz GC (1988) Quantum reactive scattering using hyperspherical coordinates: Results for H+H2 and Cl+HCl. Chem Phys Lett 150:92–98

    Article  CAS  Google Scholar 

  29. Light JC, Hamilton IP, Lill JV (1985) Generalized discrete variable approximation in quantum mechanics. J Chem Phys 82:1400–1409

    Article  CAS  Google Scholar 

  30. Vila HVR, Leal LA, Ribeiro LA, Martins JBL, Silva GM, Gargano R (2012) Spectrocopic properties of the H\(^{+}_{2}\) molecular ion in the 8k π, 9k σ, 9l π, 9l σ and 10o σ electronic states. J Mol Spect 273:26–29

    Article  Google Scholar 

  31. Dunham JL (1932) The energy levels of a rotating vibrator. Phys Rev 41:721–731

    Article  CAS  Google Scholar 

  32. Alcock CB, Chase MW, ltkin VP (1993) Thermodynamic properties of the group IIA elements. J Phys Chem Ref data 22:1– 85

    Article  CAS  Google Scholar 

  33. Lee YT, Gordon RJ, Herschbach DR (1971) Molecular beam kinetics: Reactions of H and D atoms with diatomic alkali molecules. J Chem Phys 54:2410–2423

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Brazilian Research Councils CNPq, CAPES, FAPDF, CENAPAD-SP and FINATEC. LGMM acknowledges CNPq for his postdoctoral scholarship (Grant number 157843/2015-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago Ferreira da Cunha.

Additional information

This paper belongs to Topical Collection VI Symposium on Electronic Structure and Molecular Dynamics – VI SeedMol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Cunha, T.F., Rivera Vila, H.V., Ferreira da Cunha, W. et al. Quantum isotope effects on the H+Li2 reaction. J Mol Model 23, 116 (2017). https://doi.org/10.1007/s00894-017-3289-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3289-9

Keywords

Navigation