Skip to main content
Log in

Anchoring groups for dyes in p-DSSC application: insights from DFT

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We present hybrid, periodic, spin-polarized density functional theory calculations of antiferromagnetic NiO bulk, of its clean (100) surface and of the binding on this latter of four different organic ligands, relevant for p-type dye-sensitized solar cells (p-DSSC) applications. We find evidence for a strong chemisorption of all ligands to the NiO surface in the form of short interatomic distances between surface Ni atoms and ligand atoms, confirmed by high binding energies. Although the analysis of the impact of the ligand adsorption on the density of states of the NiO substrate reveals significant modifications, the overall picture obtained is in line with the operation principles of p-DSSC in all cases. However, some of the considered ligands significantly shift the density of states to lower energies, which, in p-DSSCs employing these ligands to anchor dyes to NiO, could force the use of dyes with deeper HOMO energies and alternative redox couples capable of accepting electrons from the dye (assuming dye bandgaps in the UV/visible range).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  3. Mathew S, Yella A, Gao P, Humphry-Baker R, CF E, Ashari-Astani N, Tavernelli I, Rothlisberger U, Khaja N, Grätzel M (2014) Dye-sensitized solar cells with 13 % efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247

    Article  CAS  Google Scholar 

  4. Kakiage K, Aoyama Y, Yano T, Oya K, Ji Fujisawa, Hanaya M (2015) Highly efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51:15894–15897

    Article  CAS  Google Scholar 

  5. Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348:1234–1237

    Article  CAS  Google Scholar 

  6. Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena JP, Gao P, Scopelliti R, Mosconi E, Dahmen KH, De Angelis F, Abate A, Hagfeldt A, Pozzi G, Graetzel M, Nazeeruddin MK (2016) A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nat Energy 1:15017EP –

  7. Li X, Bi D, Yi C, Décoppet J D, Luo J, Zakeeruddin S M, Hagfeldt A, Grätzel M (2016) A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science. doi:10.1126/science.aaf8060

  8. Wang D, Wright M, Elumalai N K, Uddin A (2016) Stability of perovskite solar cells. Solar Energy Mater Solar Cells 147:255–275

    Article  CAS  Google Scholar 

  9. Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J (2016) Organometal halide perovskite solar cells: degradation and stability. Energy Environ Sci 9:323–356

    Article  CAS  Google Scholar 

  10. He J, Lindstrm H, Hagfeldt A, Lindquist S E (2000) Dye-sensitized nanostructured tandem cell-first demonstrated cell with a dye-sensitized photocathode. Solar Energy Mater Solar Cells 62:265–273

    Article  CAS  Google Scholar 

  11. Odobel F, Pellegrin Y (2013) Recent advances in the sensitization of wide-band-gap nanostructured p-type semiconductors. Photovoltaic and photocatalytic applications. J Phys Chem Lett 4:2551–2564

    Article  CAS  Google Scholar 

  12. He J, Lindström H, Hagfeldt A, Lindquist S E (1999) Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J Phys Chem B 103:8940–8943

    Article  CAS  Google Scholar 

  13. Perera I R, Daeneke T, Makuta S, Yu Z, Tachibana Y, Mishra A, Bäuerle P, Ohlin C A, Bach U, Spiccia L (2015) Application of the tris(acetylacetonato)iron(iii)/(ii) redox couple in p-type dye-sensitized solar cells. Angew Chem Int Ed 54:3758–3762

    Article  CAS  Google Scholar 

  14. Odobel F, Pleux L L, Pellegrin Y, Blart E (2010) New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities. Accounts Chem Res 43:1063–1071

    Article  CAS  Google Scholar 

  15. Labat F, Bahers T L, Ciofini I, Adamo C (2012) First-principles modeling of dye-sensitized solar cells: challenges and perspectives. Accounts Chem Res 45:1268–1277

    Article  CAS  Google Scholar 

  16. Angelis F D (2014) Modeling materials and processes in hybrid/organic photovoltaics: from dye-sensitized to perovskite solar cells. Accounts Chem Resx 47:3349–3360

    Article  Google Scholar 

  17. Labat F, Ciofini I, Adamo C (2012) Revisiting the importance of dye binding mode in dye-sensitized solar cells: a periodic viewpoint. J Mater Chem 22:12205–12211

    Article  CAS  Google Scholar 

  18. Muñoz Garcia A B, Pavone M (2015) Structure and energy level alignment at the dye–electrode interface in p-type DSSCs: new hints on the role of anchoring modes from ab initio calculations. Phys Chem Chem Phys 17:12238–12246

    Article  Google Scholar 

  19. Labat F, Adamo C (2007) Bi-isonicotinic acid on anatase (101): insights from theory. J Phys Chem C 111:15034

    Article  CAS  Google Scholar 

  20. Bahers T L, Pauporté T, Labat F, Lefèvre G, Ciofini I (2011) Acetylacetone, an interesting anchoring group for ZnO-based organic-inorganic hybrid materials: a combined experimental and theoretical study. Langmuir 27:3442–3450

    Article  Google Scholar 

  21. Renaud A, Chavillon B, Le Pleux L, Pellegrin Y, Blart E, Boujtita M, Pauporte T, Cario L, Jobic S, Odobel F (2012) CuGaO2: a promising alternative for NiO in p-type dye solar cells. J Mater Chem 22:14353–14356

    Article  CAS  Google Scholar 

  22. Yu M, Natu G, Ji Z, Wu Y (2012) p-type dye-sensitized solar cells based on delafossite CuGaO2 nanoplates with saturation photovoltages exceeding 460 mV. J Phys Chem Lett 3:1074–1078

    Article  CAS  Google Scholar 

  23. Prevot M S, Li Y, Guijarro N, Sivula K (2016) Improving charge collection with delafossite photocathodes: a host–guest CuAlO2/CuFeO2 approach. J Mater Chem A 4:3018–3026

    Article  CAS  Google Scholar 

  24. Jiang T, Bujoli-Doeuff M, Farre Y, Blart E, Pellegrin Y, Gautron E, Boujtita M, Cario L, Odobel F, Jobic S (2016) Copper borate as a photocathode in p-type dye-sensitized solar cells. RSC Adv 6:1549–1553

    Article  CAS  Google Scholar 

  25. Renaud A, Cario L, Pellegrin Y, Blart E, Boujtita M, Odobel F, Jobic S (2015) The first dye-sensitized solar cell with p-type LaOCuS nanoparticles as a photocathode. RSC Adv 5:60148–60151

    Article  CAS  Google Scholar 

  26. Pacchioni G, Valentin C D, Dominguez-Ariza D, Illas F, Bredow T, Klüner T, Staemmler V (2004) Bonding of NH3, CO, and NO to NiO and Ni-doped MgO: a problem for density functional theory. J Phys Condens Matter 16:S2497

    Article  CAS  Google Scholar 

  27. Ferrari A M, Pisani C (2006) An ab initio periodic study of NiO supported at the Pd(100) surface. part 1: the perfect epitaxial monolayer. J Phys Chem B 110:7909–7917

    Article  CAS  Google Scholar 

  28. Wang W, Li J, Zhang Y (2006) The orbital interaction of adsorbed CO on NiO (001;111) surface: a periodic density functional theory study. Appl Surf Sci 252:2673–2683

    Article  CAS  Google Scholar 

  29. Yu N, Zhang W B, Wang N, Wang Y F, Tang B Y (2008) Water adsorption on a NiO(100) surface: A GGA+U study. J Phys Chem C 112:452–457

    Article  CAS  Google Scholar 

  30. Zhang X, Li X, Qin W (2009) Investigation of the catalytic activity for ozonation on the surface of NiO nanoparticles. Chem Phys Lett 479:310 –315

    Article  CAS  Google Scholar 

  31. Ferrari A M, Pisani C, Cinquini F, Giordano L, Pacchioni G (2007) Cationic and anionic vacancies on the NiO(100) surface: DFT+U and hybrid functional density functional theory calculations. J Chem Phys 127:174711

    Article  Google Scholar 

  32. Cinquini F, Giordano L, Pacchioni G, Ferrari A M, Pisani C, Roetti C (2006) Electronic structure of NiO/Ag(100) thin films from DFT+U and hybrid functional DFT approaches. Phys Rev B 74:165403

    Article  Google Scholar 

  33. Kumar P V, Short M P, Yip S, Yildiz B, Grossman J C (2012) First-principles assessment of the reactions of boric acid on NiO(001) and ZrO2(\(\bar 1\)11) surfaces. J Phys Chem C 116:10113–10119

    Article  CAS  Google Scholar 

  34. Kontkanen O V, Niskanen M, Hukka T I, Rantala T T (2016) Electronic structure of p-type perylene monoimide-based donor-acceptor dyes on the nickel oxide (100) surface: a DFT approach. Phys Chem Chem Phys 18:14382–14389

    Article  CAS  Google Scholar 

  35. Labat F, Ciofini I, Hratchian H P, Frisch M, Raghavachari K, Adamo C (2009) First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances. J Am Chem Soc 131:14290–8

    Article  CAS  Google Scholar 

  36. Le Bahers T, Pauporté T, Lainé P P, Labat F, Adamo C, Ciofini I (2013) Modeling dye-sensitized solar cells: from theory to experiment. J Phys Chem Lett 4:1044–1050

    Article  CAS  Google Scholar 

  37. Dovesi R, Saunders V R, Roetti C, Orlando R, Zicovich-Wilson C M, Pascale F, Civalleri B, Doll K, Harrison N M, Bush I J, D’Arco P, Llunell M (2009) CRYSTAL09 user’s manual. University of Torino, Torino

    Google Scholar 

  38. Dovesi R, Saunders V R, Roetti C, Orlando R, Zicovich-Wilson C M, Pascale F, Civalleri B, Doll K, Harrison N M, Bush I J, D’Arco P, Llunell M, Causà M, Noël Y (2014) CRYSTAL14 User’s Manual. University of Torino, Torino

    Google Scholar 

  39. Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy-adjusted ab initio pseudopotentials for the first row transition elements, vol 86, pp 866–872

  40. Durand P, Barthelat J C (1975) A theoretical method to determine atomic pseudopotentials for electronic structure calculations of molecules and solids. Theor Chim Acta 38:283

    Article  CAS  Google Scholar 

  41. Barthelat J C, Durand P (1978) Gazz Chim Ital 108:225

    Google Scholar 

  42. Barthelat J C, Durand P, Serafini A (1977) Non-empirical pseudopotentials for molecular calculations I. The PSIBMOL algorithm and test calculations. Molec Phys 33:159

    Article  CAS  Google Scholar 

  43. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  44. Perdew J P, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  45. Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106

    Article  Google Scholar 

  46. Broyden C (1965) A class of methods for solving nonlinear simultaneous equations. Math Comput 19:577–593

    Article  Google Scholar 

  47. Lide D (1990) CRC Handbook of Chemistry and Physics, 71st edn. CRC Press, Boston, pp 1990–1991

    Google Scholar 

  48. Cox P (1992) Transition Metal Oxides. Oxford Science Publications. Clarendon Press, Oxford

    Google Scholar 

  49. Sawatzky G A, Allen J W (1984) Magnitude and origin of the band gap in NiO. Phys Rev Lett 53:2339–2342

    Article  CAS  Google Scholar 

  50. Cheetham A K, Hope D A O (1983) Magnetic ordering and exchange effects in the antiferromagnetic solid solutions Mn x Ni1−x O. Phys Rev B 27:6964–6967

    Article  CAS  Google Scholar 

  51. Fender B E F, Jacobson A J, Wedgwood F A (1968) Covalency parameters in MnO, α-MnS, and NiO. J Chem Phys 48:990– 994

    Article  CAS  Google Scholar 

  52. Hutchings M T, Samuelsen E J (1972) Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties. Phys Rev B 6:3447–3461

    Article  CAS  Google Scholar 

  53. Shanker R, Singh R A (1973) Analysis of the exchange parameters and magnetic properties of NiO. Phys Rev B 7:5000–5005

    Article  CAS  Google Scholar 

  54. Archer T, Pemmaraju C D, Sanvito S, Franchini C, He J, Filippetti A, Delugas P, Puggioni D, Fiorentini V, Tiwari R, Majumdar P (2011) Exchange interactions and magnetic phases of transition metal oxides: benchmarking advanced ab initio methods. Phys Rev B 84:115114

    Article  Google Scholar 

  55. De P R Moreira I, Illas F, Martin RL (2002) Effect of Fock exchange on the electronic structure and magnetic coupling in NiO. Phys Rev B 65:155102

    Article  Google Scholar 

  56. Bredow T, Gerson A R (2000) Effect of exchange and correlation on bulk properties of MgO, NiO, and CoO. Phys Rev B 61:5194–5201

    Article  CAS  Google Scholar 

  57. Rohrbach A, Hafner J, Kresse G (2004) Molecular adsorption on the surface of strongly correlated transition-metal oxides: a case study for CO/NiO(100). Phys Rev B 69:075413

    Article  Google Scholar 

  58. Netzer F P, Prutton M (1975) Leed and electron spectroscopic observations on NiO (100). J Phys C: Solid State Phys 8:2401

    Article  CAS  Google Scholar 

  59. Welton-Cook M R, Prutton M (1980) Leed calculations for the NiO (100) surface: extension to lower energies. J Phys C: Solid State Phys 13:3993

    Article  CAS  Google Scholar 

  60. Kinniburgh C, Walker J (1977) Leed calculations for the NiO(100) surface. Surface Science 63:274–282

    Article  CAS  Google Scholar 

  61. Castell M R, Dudarev S L, Briggs G A D, Sutton A P (1999) Unexpected differences in the surface electronic structure of NiO and CoO observed by STM and explained by first-principles theory. Phys Rev B 59:7342–7345

    Article  CAS  Google Scholar 

  62. Labat F, Ciofini I, Hratchian H P, Frisch M J, avachari K R, Adamo C (2011) Insights into working principles of ruthenium polypyridyl dye-sensitized solar cells from first principles modeling. J Phys Chem C 115:4297–4306

    Article  CAS  Google Scholar 

Download references

Acknowledgments

ANR is gratefully acknowledged for the financial support of this research through the program POSITIF (ANR-12-PRGE-0016-01). This work was granted access to the HPC resources of MesoPSL financed by the Région Ile-de-France and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the program Investissements d’Avenir supervised by the Agence Nationale pour la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Labat.

Additional information

This work is dedicated to Henry Chermette for his significant contribution to the development of theoretical chemistry in France.

This paper belongs to Topical Collection Festschrift in Honor of Henry Chermette

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 436 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wykes, M., Odobel, F., Adamo, C. et al. Anchoring groups for dyes in p-DSSC application: insights from DFT. J Mol Model 22, 289 (2016). https://doi.org/10.1007/s00894-016-3155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3155-1

Keywords

Navigation