Skip to main content
Log in

Computational modelling of the binding of arachidonic acid to the human monooxygenase CYP2J2

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

An experimentally determined structure for human CYP2J2—a member of the cytochrome P450 family with significant and diverse roles across a number of tissues—does not yet exist. Our understanding of how CYP2J2 accommodates its cognate substrates and how it might be inhibited by other ligands thus relies on our ability to computationally predict such interactions using modelling techniques. In this study we present a computational investigation of the binding of arachidonic acid (AA) to CYP2J2 using homology modelling, induced fit docking (IFD) and molecular dynamics (MD) simulations. Our study reveals a catalytically competent binding mode for AA that is distinct from a recently published study that followed a different computational pipeline. Our proposed binding mode for AA is supported by crystal structures of complexes of related enzymes to inhibitors, and evolutionary conservation of a residue whose role appears essential for placing AA in the right site for catalysis.

Arachidonic acid docked in the active site of CYP2J2 assumes a catalytically competent binding mode stabilised by hydrogen bonds to Arg117

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CYP:

Cytochrome P450

CYP2J2:

Human cytochrome P450 2J2

AA:

Arachidonic acid

EET:

Epoxyeicosatrienoic acid

MD:

Molecular dynamics

IFD:

Induced fit docking

References

  1. Bishop-Bailey D, Thomson S, Askari A et al (2014) Lipid-metabolizing CYPs in the regulation and dysregulation of metabolism. Annu Rev Nutr 34:261–279. doi:10.1146/annurev-nutr-071813-105747

    Article  CAS  Google Scholar 

  2. Wu S, Moomaw CR, Tomer KB et al (1996) Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J Biol Chem 271:3460–3468. doi:10.1074/jbc.271.7.3460

    Article  CAS  Google Scholar 

  3. Xu M, Ju W, Hao H et al (2013) Cytochrome P450 2J2: distribution, function, regulation, genetic polymorphisms and clinical significance. Drug Metab Rev 45:311–352. doi:10.3109/03602532.2013.806537

    Article  CAS  Google Scholar 

  4. Askari AA, Thomson S, Edin ML et al (2014) Basal and inducible anti-inflammatory epoxygenase activity in endothelial cells. Biochem Biophys Res Commun 446:633–637. doi:10.1016/j.bbrc.2014.03.020

    Article  CAS  Google Scholar 

  5. Bystrom J, Thomson SJ, Johansson J et al (2013) Inducible CYP2J2 and its product 11,12-EET promotes bacterial phagocytosis: a role for CYP2J2 deficiency in the pathogenesis of Crohn’s disease? PLoS ONE 8:e75107. doi:10.1371/journal.pone.0075107

    Article  CAS  Google Scholar 

  6. El-Serafi I, Fares M, Abedi-Valugerdi M et al (2015) Cytochrome P450 2J2, a new key enzyme in cyclophosphamide bioactivation and a potential biomarker for hematological malignancies. Pharmacogenomics J 15:405–413. doi:10.1038/tpj.2014.82

    Article  CAS  Google Scholar 

  7. Zeldin DC (2001) Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem 276:36059–36062. doi:10.1074/jbc.R100030200

    Article  CAS  Google Scholar 

  8. Westphal C, Konkel A, Schunck W-H (2011) CYP-eicosanoids—A new link between omega-3 fatty acids and cardiac disease? Prostaglandins Other Lipid Mediat 96:99–108. doi:10.1016/j.prostaglandins.2011.09.001

    Article  CAS  Google Scholar 

  9. Lee CA, Neul D, Clouser-Roche A et al (2010) Identification of novel substrates for human cytochrome P450 2J2. Drug Metab Dispos 38:347–356. doi:10.1124/dmd.109.030270

    Article  CAS  Google Scholar 

  10. Liu K-H, Kim M-G, Lee D-J et al (2006) Characterization of ebastine, hydroxyebastine, and carebastine metabolism by human liver microsomes and expressed cytochrome P450 enzymes: major roles for CYP2J2 and CYP3A. Drug Metab Dispos 34:1793–1797. doi:10.1124/dmd.106.010488

    Article  CAS  Google Scholar 

  11. Askari A, Thomson SJ, Edin ML et al (2013) Roles of the epoxygenase CYP2J2 in the endothelium. Prostaglandins Other Lipid Mediat 107:56–63. doi:10.1016/j.prostaglandins.2013.02.003

    Article  CAS  Google Scholar 

  12. Lafite P, Dijols S, Zeldin DC et al (2007) Selective, competitive and mechanism-based inhibitors of human cytochrome P450 2J2. Arch Biochem Biophys 464:155–168. doi:10.1016/j.abb.2007.03.028

    Article  CAS  Google Scholar 

  13. Lee CA, Jones JP, Katayama J et al (2012) Identifying a selective substrate and inhibitor pair for the evaluation of CYP2J2 activity. Drug Metab Dispos 40:943–951. doi:10.1124/dmd.111.043505

    Article  CAS  Google Scholar 

  14. Du H, Brender JR, Zhang J, Zhang Y (2015) Protein structure prediction provides comparable performance to crystallographic structures in docking-based virtual screening. Methods 71:77–84. doi:10.1016/j.ymeth.2014.08.017

    Article  CAS  Google Scholar 

  15. Lukk T, Sakai A, Kalyanaraman C et al (2012) Homology models guide discovery of diverse enzyme specificities among dipeptide epimerases in the enolase superfamily. Proc Natl Acad Sci USA 109:4122–4127. doi:10.1073/pnas.1112081109

    Article  CAS  Google Scholar 

  16. Ramachandran S, Dokholyan NV (2012) Homology modeling: generating structural models to understand protein function and mechanism. In: Dokholyan NV (ed) Computational modeling of biological systems. Springer, Boston, pp 97–116

  17. Carlsson J, Coleman RG, Setola V et al (2011) Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat Chem Biol 7:769–778. doi:10.1038/nchembio.662

    Article  CAS  Google Scholar 

  18. Kannan S, Melesina J, Hauser A-T et al (2014) Discovery of inhibitors of Schistosoma mansoni HDAC8 by combining homology modeling, virtual screening, and in vitro validation. J Chem Inf Model 54:3005–3019. doi:10.1021/ci5004653

    Article  CAS  Google Scholar 

  19. Lafite P, André F, Zeldin DC et al (2007) Unusual regioselectivity and active site topology of human cytochrome P450 2J2. Biochemistry 46:10237–10247. doi:10.1021/bi700876a

    Article  CAS  Google Scholar 

  20. Li W, Tang Y, Liu H et al (2008) Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking. Proteins 71:938–949. doi:10.1002/prot.21778

    Article  CAS  Google Scholar 

  21. Williams PA, Cosme J, Ward A et al (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468. doi:10.1038/nature01862

    Article  CAS  Google Scholar 

  22. Cong S, Ma X-T, Li Y-X, Wang J-F (2013) Structural basis for the mutation-induced dysfunction of human CYP2J2: a computational study. J Chem Inf Model 53:1350–1357. doi:10.1021/ci400003p

    Article  CAS  Google Scholar 

  23. Xia X-L, Fa B-T, Cong S et al (2014) Research/review: Insights into the mutation-induced dysfunction of arachidonic acid metabolism from modeling of human CYP2J2. Curr Drug Metab 15:502–513

    Article  CAS  Google Scholar 

  24. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  25. Scott EE, White MA, He YA et al (2004) Structure of mammalian cytochrome P450 2B4 complexed with 4-(4-chlorophenyl)imidazole at 1.9-A resolution: insight into the range of P450 conformations and the coordination of redox partner binding. J Biol Chem 279:27294–27301. doi:10.1074/jbc.M403349200

    Article  CAS  Google Scholar 

  26. Strushkevich N, Usanov SA, Plotnikov AN et al (2008) Structural analysis of CYP2R1 in complex with vitamin D3. J Mol Biol 380:95–106. doi:10.1016/j.jmb.2008.03.065

    Article  CAS  Google Scholar 

  27. Schrödinger, LLC Schrödinger Suite 2014–1 Protein Preparation Wizard; Epik version 2.7, Schrödinger, LLC, New York, NY, 2013; Impact version 6.2, Schrödinger, LLC, New York, NY, 2014; Prime version 3.5, Schrödinger, LLC, New York, NY, 2014

  28. Schrödinger, LLC Prime, version 3.5, Schrödinger, LLC, New York, NY, 2014

  29. Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85. doi:10.1038/356083a0

    Article  Google Scholar 

  30. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. doi:10.1002/pro.5560020916

    Article  CAS  Google Scholar 

  31. Laskowski RA, MacArthur MW, Moss DS et al (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  32. Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:gkp322–W514. doi:10.1093/nar/gkp322

    Article  Google Scholar 

  33. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202–D1213. doi:10.1093/nar/gkv951

    Article  Google Scholar 

  34. Schrödinger, LLC Schrödinger Release 2014–1: LigPrep, version 2.9, Schrödinger, LLC, New York, NY, 2014

  35. Schrödinger, LLC Schrödinger Release 2014–1: Epik, version 2.7, Schrödinger, LLC, New York, NY, 2014

  36. Banks JL, Beard HS, Cao Y et al (2005) Integrated Modeling Program, Applied Chemical Theory (IMPACT). J Comput Chem 26:1752–1780. doi:10.1002/jcc.20292

    Article  CAS  Google Scholar 

  37. Sherman W, Day T, Jacobson MP et al (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553. doi:10.1021/jm050540c

    Article  CAS  Google Scholar 

  38. Kräutler V, van Gunsteren WF, Hünenberger PH (2001) A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J Comput Chem 22:501–508. doi:10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V

    Article  Google Scholar 

  39. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  CAS  Google Scholar 

  40. Pieper U, Webb BM, Dong GQ et al (2014) ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res 42:D336–D346. doi:10.1093/nar/gkt1144

    Article  CAS  Google Scholar 

  41. Haas J, Roth S, Arnold K et al (2013) The Protein Model Portal—a comprehensive resource for protein structure and model information. Database (Oxford) 2013:bat031. doi:10.1093/database/bat031

    Article  Google Scholar 

  42. Halgren T (2007) New method for fast and accurate binding-site identification and analysis. Chem Biol Drug Des 69:146–148. doi:10.1111/j.1747-0285.2007.00483.x

    Article  CAS  Google Scholar 

  43. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinforma 10:168. doi:10.1186/1471-2105-10-168

    Article  Google Scholar 

  44. Laskowski RA (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29:221–222

    Article  CAS  Google Scholar 

  45. Bhattarai S, Niraula NP, Sohng JK, Oh T-J (2012) In-silico and In-vitro based studies of Streptomyces peucetius CYP107N3 for oleic acid epoxidation. BMB Rep 45:736–741. doi:10.5483/BMBRep.2012.45.12.080

    Article  CAS  Google Scholar 

  46. Ren S, Zeng J, Mei Y et al (2013) Discovery and characterization of novel, potent, and selective cytochrome P450 2J2 inhibitors. Drug Metab Dispos 41:60–71. doi:10.1124/dmd.112.048264

    Article  CAS  Google Scholar 

  47. Schoch GA, Yano JK, Sansen S et al (2008) Determinants of cytochrome P450 2C8 substrate binding: structures of complexes with montelukast, troglitazone, felodipine, and 9-cis-retinoic acid. J Biol Chem 283:17227–17237. doi:10.1074/jbc.M802180200

    Article  CAS  Google Scholar 

  48. DeVore NM, Scott EE (2012) Structures of cytochrome P450 17A1 with prostate cancer drugs abiraterone and TOK-001. Nature 482:116–119. doi:10.1038/nature10743

    Article  CAS  Google Scholar 

  49. Zhao Y, White MA, Muralidhara BK et al (2006) Structure of microsomal cytochrome P450 2B4 complexed with the antifungal drug bifonazole: insight into P450 conformational plasticity and membrane interaction. J Biol Chem 281:5973–5981. doi:10.1074/jbc.M511464200

    Article  CAS  Google Scholar 

  50. Wu S, Chen W, Murphy E et al (1997) Molecular cloning, expression, and functional significance of a cytochrome P450 highly expressed in rat heart myocytes. J Biol Chem 272:12551–12559. doi:10.1074/jbc.272.19.12551

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Nobeli.

Ethics declarations

Funding

G.P. was funded for this work by an Erasmus Placement Grant (2013/2014) received from the University of Perugia. K.K.A. is funded by a Bloomsbury Colleges PhD studentship.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

G. Proietti and K. K. Abelak contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 34051 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proietti, G., Abelak, K.K., Bishop-Bailey, D. et al. Computational modelling of the binding of arachidonic acid to the human monooxygenase CYP2J2. J Mol Model 22, 279 (2016). https://doi.org/10.1007/s00894-016-3134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3134-6

Keywords

Navigation