Skip to main content
Log in

Van der Waals molecular interactions in the organic functionalization of graphane, silicane, and germanane with alkene and alkyne molecules: a DFT-D2 study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory with the addition of a semi-empirical dispersion potential was applied to the conventional Kohn–Sham energy to study the adsorption of alkene and alkyne molecules on hydrogen-terminated two-dimensional group IV systems (graphane, silicane, and germanane) by means of a radical-initiated reaction. In particular, we investigated the interactions of acetylene, ethylene, and styrene with those surfaces. Although we had studied these systems previously, we included van der Waals interactions in all of the cases examined in the present work. These forces, which are noncovalent interactions, can heavily influence different processes in molecular chemistry, such as the adsorption of organic molecules on semiconductor surfaces. This unified approach allowed us to perform a comparative study of the relative reactivities of the various organic molecule/surface systems. The results showed that the degree of covalency of the surface, the lattice size, and the partial charge distribution (caused by differences in electronegativity) are all key elements that determine the reactivity between the molecules and the surfaces tested in this work. The covalent nature of graphane gives rise to energetically favorable intermediate states, while the opposite polarities of the charge distributions of silicane and germanane with the organic molecules favor subsequent steps of the radical-initiated reaction. Finally, the lattice size is a factor that has important consequences due to steric effects present in the systems and the possibility of chain reaction continuation. The results obtained in this work show that careful selection of the substrate is very important. Calculated energy barriers, heats of adsorption, and optimized atomic structures show that the silicane system offers the best reactivity in organic functionalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–f
Fig. 3a–c
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8a–f

Similar content being viewed by others

References

  1. Hobza P, Müller-Dethlefs (2010) Non-covalent interactions: theory and experiment. Royal Society of Chemistry, Cambridge

    Google Scholar 

  2. Claridge AS, Liao WS, Thomas JC, Zhao Y, Cao HH, Cheunkar S, Serino AC, Andrews AM, Weiss PS (2013) From the bottom up: dimensional control and characterization in molecular monolayers. Chem Soc Rev 42:2725–2745. doi:10.1039/C2CS35365B

    Article  CAS  Google Scholar 

  3. Bent SF (2002) Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects. Surf Sci 500:879–903. doi:10.1016/S0039-6028(01)01553-9

    Article  CAS  Google Scholar 

  4. Teplyakov AV, Bent SF (2013) Semiconductor surface functionalization for advances in electronics, energy conversion, and dynamic systems. J Vac Sci Technol A 31:050810-1–050810-12. doi:10.1116/1.4810784

    Article  Google Scholar 

  5. Kamra T, Chaudhary S, Xu C, Montelius L, Schnadt J, Ye L (2016) Covalent immobilization of molecularly imprinted polymer nanoparticles on a gold surface using carbodiimide coupling for chemical sensing. J Colloid Interface Sci 461:1–8. doi:10.1016/j.jcis.2015.09.009

    Article  CAS  Google Scholar 

  6. James CD, Davis R, Meyer M, Turner A, Turner S, Withers G, Kam L, Banker G, Craighead H, Isaacson M, Turner J, Shain W (2000) Aligned microcontact printing of micrometer-scale poly-L-lysine structures for controlled growth of cultured neurons on planar microelectrode arrays. IEEE Trans Biomed Eng 47:17–21. doi:10.1109/10.817614

  7. King PH, Corsi JC, Pan BH, Morgan H, de Planque MRR, Zauner KP (2012) Towards molecular computing: co-development of microfluidic devices and chemical reaction media. Biosystems 109:18–23. doi:10.1016/j.biosystems.2012.01.003

    Article  CAS  Google Scholar 

  8. De Feyter S, Gesquiere A, Abdel-Mottaleb MM, Grim PCM, De Schryver F, Meiners C, Sieffert M, Valiyaveettil S, Mullen K (2000) Scanning tunneling microscopy: a unique tool in the study of chirality, dynamics, and reactivity in physisorbed organic monolayers. Acc Chem Res 33:520–531. doi:10.1021/ar970040g

    Article  CAS  Google Scholar 

  9. De Feyter S, De Schryver F (2003) Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem Soc Rev 32:139–150. doi:10.1039/B206566P

    Article  CAS  Google Scholar 

  10. Parsegian VA (2005) Van der Waals forces: a handbook for biologists, chemists, engineers, and physicists. Cambridge University Press, New York

  11. Linford MR, Chidsey CED (1993) Alkyl monolayers covalently bonded to silicon surfaces. J Am Chem Soc 115:12631–12632. doi:10.1021/ja00079a071

    Article  CAS  Google Scholar 

  12. Lopinski GP, Wayner DDM, Wolkow RA (2000) Self-directed growth of molecular nanostructures on silicon. Nature 406:48–51. doi:10.1038/35017519

    Article  CAS  Google Scholar 

  13. Kang JK, Musgrave CB (2002) A quantum chemical study of the self-directed growth mechanism of styrene and propylene molecular nanowires on the silicon (100) 2×1 surface. J Chem Phys 116:9907. doi:10.1063/1.1476005

    Article  CAS  Google Scholar 

  14. Hosssain MZ, Kato HS, Kawai M (2005) Controlled fabrication of 1D molecular lines across the dimer rows on the Si(100)−(2 × 1)−H surface through the radical chain reaction. J Am Chem Soc 127:15030–15031. doi:10.1021/ja055515a

    Article  Google Scholar 

  15. Hosssain MZ, Kato HS, Kawai M (2005) Fabrication of interconnected 1D molecular lines along and across the dimer rows on the Si(100)−(2 × 1)−H surface through the radical chain reaction. J Phys Chem B 109:23129–23133. doi:10.1021/jp055760g

    Article  Google Scholar 

  16. Lee JH, Choi JH, Cho JH (2011) Enhanced stability and electronic structure of phenylacetylene lines on the Si(100)-(2 × 1):H surface. J Phys Chem C 115:14942–14946. doi:10.1021/jp203980y

    Article  CAS  Google Scholar 

  17. Hosssain MZ, Kato HS, Jung J, Kim Y, Kawai M (2013) Molecular assembly through the chain reaction of substituted acenes on the Si(100)–(2 × 1)–H surface. J Phys Chem C 117:19436–19441. doi:10.1021/jp405487v

    Article  Google Scholar 

  18. Takeuchi N, Kanai Y, Selloni A (2004) Surface reaction of alkynes and alkenes with H-Si(111): a density functional theory study. J Am Chem Soc 126:15890–15896. doi:10.1021/ja046702w

    Article  CAS  Google Scholar 

  19. Takeuchi N, Selloni A (2005) Density functional theory study of one-dimensional growth of styrene on the hydrogen-terminated Si(001)-(3 × 1) surface. J Phys Chem B 109:11967–11972. doi:10.1021/jp0507344

    Article  CAS  Google Scholar 

  20. Kanai Y, Takeuchi N, Car R, Selloni A (2005) Role of molecular conjugation in the surface radical reaction of aldehydes with H-Si (111): first principles study. J Phys Chem B 109:18889–18894. doi:10.1021/jp0527610

    Article  CAS  Google Scholar 

  21. Takeuchi N, Kanai Y, Selloni A (2010) Surface radical chain reaction revisited: comparative investigation of styrene and 2,4-dimethyl-styrene on hydrogenated Si(001) surface from density functional theory calculations. J Phys Chem C 114:3981–3986. doi:10.1021/jp9097183

    Article  CAS  Google Scholar 

  22. Rubio-Pereda P, Takeuchi N (2013) Density functional theory study of the organic functionalization of hydrogenated silicene. J Chem Phys 138:194702. doi:10.1063/1.4804545

    Article  Google Scholar 

  23. Rubio-Pereda P, Takeuchi N (2013) Density functional theory study of the organic functionalization of hydrogenated graphene. J Phys Chem C 177:18738–18745. doi:10.1021/jp406192c

    Article  Google Scholar 

  24. Rubio-Pereda P, Takeuchi N (2015) Adsorption of organic molecules on the hydrogenated germanene: a DFT study. J Phys Chem C 119:27995–28004. doi:10.1021/acs.jpcc.5b08370

    Article  CAS  Google Scholar 

  25. Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10:4285–4294. doi:10.1021/nl102824h

    Article  CAS  Google Scholar 

  26. Dimoulas A (2015) Silicene and germanene: silicon and germanium in the “flatland”. Microelectron Eng 131:68–78. doi:10.1016/j.mee.2014.08.013

    Article  CAS  Google Scholar 

  27. Jiang S, Arguilla MQ, Cultrara ND, Goldberger JE (2015) Covalently-controlled properties by design in group IV graphane analogues. Acc Chem Res 48:144–151. doi:10.1021/ar500296e

    Article  CAS  Google Scholar 

  28. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  29. Zhang IY, Xu X (2013) A new generation density functional: towards chemical accuracy for chemistry of main group elements. Springer, Heidelberg

  30. Dzade NY, Roldan A, Leeuw NH (2014) The surface chemistry of NOx on mackinawite (FeS) surfaces: a DFT-D2 study. Phys Chem Chem Phys 16:15444–15456. doi:10.1039/C4CP01138D

    Article  CAS  Google Scholar 

  31. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502-1–395502-19. doi:10.1088/0953-8984/21/39/395502

    Article  Google Scholar 

  32. Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D (1993) Car–Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys Rev B 47:10142–10153

  33. Perdew JP, Burke K, Ernzerholf M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  34. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

  35. Jensen F (2003) Introduction to computational chemistry. Wiley, Chichester

  36. Emeléus HJ, Stewart K (1935) The oxidation of the silicon hydrides. J Chem Soc 1182–1189. doi: 10.1039/JR9350001182

Download references

Acknowledgments

We are grateful for financial support from Conacyt Project 164485 and DGAPA project IN100516. Calculations were performed in the DGCTIC-UNAM supercomputing center (project SC16-1-IG-31).

All of the authors contributed to the writing of the manuscript. All of the authors also gave their approval to the final version of the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Rubio-Pereda.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio-Pereda, P., Takeuchi, N. Van der Waals molecular interactions in the organic functionalization of graphane, silicane, and germanane with alkene and alkyne molecules: a DFT-D2 study. J Mol Model 22, 175 (2016). https://doi.org/10.1007/s00894-016-3048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3048-3

Keywords

Navigation