Skip to main content
Log in

Effects of CO/CO2/NO on elemental lead adsorption on carbonaceous surfaces

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The adsorption processes of elemental lead on carbonaceous surfaces which adsorbed CO/CO2/NO flue gases were investigated to understand the effects of CO/CO2/NO on elemental lead adsorption on carbonaceous surfaces with density functional theory. All calculations including optimizations, energies, and frequencies were conducted at B3PW91 density functional theory level, utilizing SDD basis set for lead and 6-31G(d) Pople basis set for other atoms. The results indicate that CO, CO2, and NO can promote the adsorption of elemental lead on the carbonaceous surface, but probably compete for adsorption sites with elemental lead. The promotion effects on adsorption can be attributed to active sites on the carbonaceous surface rather than flue gas adsorption on the carbonaceous surface. In addition, the adsorption order of three kinds of flue gas on the carbonaceous surface is CO2 > NO > CO > Pb on average. Furthermore, the enhancement order of three kinds of flue gas on the elemental lead adsorption on carbonaceous surfaces is CO-CS > CO2-CS > NO-CS > CS in general. In particular, atomic charge and adsorption energy have good linear relationship in the process of elemental lead adsorption.

Competitive adsorption between flue gas and elemental lead on carbonaceous surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iyer S, Sengupta C, Velumani A (2015) Lead toxicity: an overview of prevalence in Indians. Clinica Chimica Acta

  2. Debelius B, Forja JM, DelValls Á et al. (2009) Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol Environ Saf 72(5):1503–1513

    Article  CAS  Google Scholar 

  3. Lee YH, Lee DH, Kim JH et al (1995) Blood lead levels in children. Korean J Occup Environ Med 7(1):82–87

    Google Scholar 

  4. Hildebrand MP (2011) Lead toxicity in a newborn. J Pediatr Health Care 25(5):328–331

    Article  Google Scholar 

  5. Shen ZG, Li XD, Chen HM et al (2002) Phytoextraction of Pb from a contaminated soil using high biomass species of plants. J Environ Qual 31:1893–1900

    Article  CAS  Google Scholar 

  6. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338(6210):47–49

    Article  CAS  Google Scholar 

  7. Li XL, Zhang YX, Tan MG et al (2009) Atmospheric lead pollution in fine particulate matter in Shanghai, China. J Environ Sci 21(8):1118–1124

    Article  CAS  Google Scholar 

  8. Tan MG, Zhang GL, Li XL et al (2006) Comprehensive study of lead pollution in Shanghai by multiple techniques. Anal Chem 78(23):8044–8050

    Article  CAS  Google Scholar 

  9. Lou MT, Qin JF, Li ZX et al (2012) Review on lead pollution in China. Guangdong Trace Elem Sci 19(10):10–20

    Google Scholar 

  10. Qin JF, Li ZX, Lou MT et al (2010) Status sources of pollution and control measures of Chinese children lead poisoning. Guangdong Trace Elem Sci 17(1):1–13

    Google Scholar 

  11. Deng S, Zhang F, Liu Y et al (2013) Lead emission and speciation of coal-fired power plants in China. China Environ Sci 33(7):1199–1206

    CAS  Google Scholar 

  12. Chen SJ, Xue JM, Xu YY et al (2015) Analysis on reduction of trace elements in flue gas by dust removing facilities in coal-fired power plants. Proc CSEE 35(9):2224–2230

    Google Scholar 

  13. Li J, Maroto-Valer MM (2012) Computational and experimental studies of mercury adsorption on unburned carbon present in fly ash. Carbon 50(5):1913–1924

    Article  CAS  Google Scholar 

  14. Padak B, Brunetti M, Lewis A et al (2006) Mercury binding on carbonaceous. Environ Prog 25(4):319–326

    Article  CAS  Google Scholar 

  15. Matsumura Y (1974) Adsorption of mercury vapor on the surface of activated carbons modified by oxidation or iodization. Atmos Environ (1967) 8(12):1321–1327

    Article  CAS  Google Scholar 

  16. Hu C, Zhou J, He S et al (2009) Effect of chemical activation of an activated carbon using zinc chloride on elemental mercury adsorption. Fuel Process Technol 90(6):812–817

    Article  CAS  Google Scholar 

  17. Zhang Y, Zhao L, Guo R et al (2015) Mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor. J Environ Sci 33:156–162

    Article  Google Scholar 

  18. Mei Z, Shen Z, Zhao Q et al (2008) Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon. J Hazard Mater 152(2):721–729

    Article  CAS  Google Scholar 

  19. Zhou Q, Duan YF, Hong YG et al (2015) Experimental and kinetic studies of gas-phase mercury adsorption by raw and bromine modified activated carbon. Fuel Process Technol 134:325–332

    Article  CAS  Google Scholar 

  20. Padak B, Wilcox J (2009) Understanding mercury binding on activated carbon. Carbon 47(12):2855–2864

    Article  CAS  Google Scholar 

  21. Montoya A, Truong TTT, Mondragon F et al (2001) CO desorption from oxygen species on carbonaceous surface: 1. Effects of the local structure of the active site and the surface coverage. J Phys Chem A 105(27):6757–6764

    Article  CAS  Google Scholar 

  22. Montoya A, Mondragon F, Truong TN (2002) First-principles kinetics of CO desorption from oxygen species on carbonaceous surface. J Phys Chem A 106(16):4236–4239

    Article  CAS  Google Scholar 

  23. Wu X, Radovic LR (2004) Ab initio molecular orbital study on the electronic structures and reactivity of boron-substituted carbon. J Phys Chem A 108(42):9180–9187

    Article  CAS  Google Scholar 

  24. Radovic LR (2005) The mechanism of CO 2 chemisorption on zigzag carbon active sites: a computational chemistry study. Carbon 43(5):907–915

    Article  CAS  Google Scholar 

  25. Chen N, Yang RT (1998) Ab initio molecular orbital study of the unified mechanism and pathways for gas-carbon reactions. J Phys Chem A 102(31):6348–6356

    Article  CAS  Google Scholar 

  26. Chen N, Yang RT (1998) Ab initio molecular orbital calculation on graphite: Selection of molecular system and model chemistry. Carbon 36(7):1061–1070

    Article  CAS  Google Scholar 

  27. Liu J, Cheney MA, Wu F et al (2011) Effects of chemical functional groups on elemental mercury adsorption on carbonaceous surfaces. J Hazard Mater 186(1):108–113

    Article  CAS  Google Scholar 

  28. Liu J, Qu W, Yuan J et al (2009) Theoretical studies of properties and reactions involving mercury species present in combustion flue gases. Energy Fuel 24(1):117–122

    Article  CAS  Google Scholar 

  29. Liu J, Qu W, Joo SW et al (2012) Effect of SO2 on mercury binding on carbonaceous surfaces. Chem Eng J 184:163–167

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2010) Gaussian09, revision B.01. Gaussian Inc, Wallingford

    Google Scholar 

  31. Xin G, Zhao P, Zheng C (2009) Theoretical study of different speciation of mercury adsorption on CaO (001) surface. Proc Combust Inst 32(2):2693–2699

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijie Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Z., Yang, W. Effects of CO/CO2/NO on elemental lead adsorption on carbonaceous surfaces. J Mol Model 22, 166 (2016). https://doi.org/10.1007/s00894-016-3023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-016-3023-z

Keywords

Navigation