Skip to main content
Log in

Interaction of ions with the luminal sides of wild-type and mutated skeletal muscle ryanodine receptors

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ryanodine receptors (RyRs) are the largest known ion channels, and are of central importance for the release of Ca2+ from the sarco/endoplasmic reticulum (SR/ER) in a variety of cells. In cardiac and skeletal muscle cells, contraction is triggered by the release of Ca2+ into the cytoplasm and thus depends crucially on correct RyR function. In this work, in silico mutants of the RyR pore were generated and MD simulations were conducted to examine the impact of the mutations on the Ca2+ distribution. The Ca2+ distribution pattern on the luminal side of the RyR was most affected by G4898R, D4899Q, E4900Q, R4913E, and D4917A mutations. MD simulations with our wild-type model and various ion species showed a preference for Ca2+ over other cations at the luminal pore entrance. This Ca2+-accumulating characteristic of the luminal RyR side may be essential to the conductance properties of the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–n
Fig. 2a–d
Fig. 3a–b

Similar content being viewed by others

References

  1. Zalk R, Lehnart SE, Marks AR (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76:367–385

    Article  CAS  Google Scholar 

  2. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2:a003996

    Article  CAS  Google Scholar 

  3. Van Petegem F (2012) Ryanodine receptors: structure and function. J Biol Chem 287:31624–31632

    Article  Google Scholar 

  4. Fink RH, Veigel C (1996) Calcium uptake and release modulated by counter-ion conductances in the sarcoplasmic reticulum of skeletal muscle. Acta Physiol Scand 156:387–396

    Article  CAS  Google Scholar 

  5. Wu S, Ibarra MCA, Malicdan MCV, Murayama K, Ichihara Y, Kikuchi H, Nonaka I, Noguchi S, Hayashi YKH, Nishino I (2006) Central core disease is due to RYR1 mutations in more than 90% of patients. Brain 129:1470–1480

    Article  Google Scholar 

  6. Zhou H, Jungbluth H, Sewry CA, Feng L, Bertini E, Bushby K, Straub V, Roper H, Rose MR, Brockington M, Kinali M, Manzur A, Robb S, Appleton R, Messina S, D’Amico A, Quinlivan R, Swash M, Müller CR, Brown S, Treves S, Muntoni F (2007) Molecular mechanisms and phenotypic variation in RYR1-related congenital myopathies. Brain 130:2024–2036

    Article  Google Scholar 

  7. Kimlicka L, Van Petegem F (2011) The structural biology of ryanodine receptors. Sci China Life Sci 54:712–724

    Article  CAS  Google Scholar 

  8. Ludtke SJ, Serysheva II, Hamilton SL, Chiu W (2005) The pore structure of the closed RyR1 channel. Structure 13:1203–1211

    Article  CAS  Google Scholar 

  9. Samsó M, Wagenknecht T, Allen PD (2005) Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM. Nat Struct Mol Biol 12:539–544

    Article  Google Scholar 

  10. Samsó M, Feng W, Pessah IN, Allen PD (2009) Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating. PLoS Biol 7:e85

    Article  Google Scholar 

  11. Efremov RG, Leitner A, Aebersold R, Raunser S (2015) Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517:39–43

    Article  CAS  Google Scholar 

  12. Zalk R, Clarke OB, des Georges A, Grassucci RA, Reiken S, Mancia F, Hendrickson WA, Frank J, Marks AR (2015) Structure of a mammalian ryanodine receptor. Nature 517:44–49

    Article  CAS  Google Scholar 

  13. Yan Z, Bai X-C, Yan C, Wu J, Li Z, Xie T, Peng W, Yin C-C, Li X, Scheres SHW, Shi Y, Yan N (2015) Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature 517:50–55

    Article  CAS  Google Scholar 

  14. Gillespie D, Xu L, Wang Y, Meissner G (2005) (De)constructing the ryanodine receptor: modeling ion permeation and selectivity of the calcium release channel. J Phys Chem B 109:15598–15610

    Article  CAS  Google Scholar 

  15. Gillespie D (2008) Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. Biophys J 94:1169–1184

    Article  CAS  Google Scholar 

  16. Welch W, Rheault S, West DJ, Williams AJ (2004) A model of the putative pore region of the cardiac ryanodine receptor channel. Biophys J 87:2335–2351

    Article  CAS  Google Scholar 

  17. Ramachandran S, Serohijos AWR, Xu L, Meissner G, Dokholyan NV (2009) A structural model of the pore-forming region of the skeletal muscle ryanodine receptor (RyR1). PLoS Comput Biol 5:e1000367

    Article  Google Scholar 

  18. Ramachandran S, Chakraborty A, Xu L, Mei Y, Samsó M, Dokholyan NV, Meissner G (2013) Structural determinants of skeletal muscle ryanodine receptor gating. J Biol Chem 288:6154–6165

    Article  CAS  Google Scholar 

  19. Schilling R, Fink RHA, Fischer WB (2014) MD simulations of the central pore of ryanodine receptors and sequence comparison with 2B protein from coxsackie virus. Biochim Biophys Acta 1838:1122–1131

    Article  CAS  Google Scholar 

  20. Shirvanyants D, Ramachandran S, Mei Y, Xu L, Meissner G, Dokholyan NV (2014) Pore dynamics and conductance of RyR1 transmembrane domain. Biophys J 106:2375–2384

    Article  CAS  Google Scholar 

  21. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417:523–526

    Article  CAS  Google Scholar 

  22. Zhao M, Li P, Li X, Zhang L, Winkfein RJ, Chen SR (1999) Molecular identification of the ryanodine receptor pore-forming segment. J Biol Chem 274:25971–25974

    Article  CAS  Google Scholar 

  23. Gao L, Balshaw D, Xu L, Tripathy A, Xin C, Meissner G (2000) Evidence for a role of the lumenal M3-M4 loop in skeletal muscle Ca(2+) release channel (ryanodine receptor) activity and conductance. Biophys J 79:828–840

    Article  CAS  Google Scholar 

  24. Wang Y, Xu L, Pasek DA, Gillespie D, Meissner G (2005) Probing the role of negatively charged amino acid residues in ion permeation of skeletal muscle ryanodine receptor. Biophys J 89:256–265

    Article  Google Scholar 

  25. Xu L, Wang Y, Yamaguchi N, Pasek DA, Meissner G (2008) Single channel properties of heterotetrameric mutant RyR1 ion channels linked to core myopathies. J Biol Chem 283:6321–6329

    Article  CAS  Google Scholar 

  26. Mead-Savery FC, Wang R, Tanna-Topan B, Chen SR, Welch W, Williams AJ (2009) Changes in negative charge at the luminal mouth of the pore alter ion handling and gating in the cardiac ryanodine-receptor. Biophys J 96:1374–1387

    Article  CAS  Google Scholar 

  27. Lee SY, Lee A, Chen J, MacKinnon R (2005) Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc Natl Acad Sci USA 102:15441–15446

  28. Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854

    Article  CAS  Google Scholar 

  29. Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218

    Article  CAS  Google Scholar 

  30. Krüger J, Fischer WB (2008) Exploring the conformational space of Vpu from HIV-1: a versatile adaptable protein. J Comput Chem 29:2416–2424

    Article  Google Scholar 

  31. Chandrasekhar I, Kastenholz M, Lins RD, Oostenbrink C, Schuler LD, Tieleman DP, van Gunsteren WF (2003) A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field. Eur Biophys J 32:67–77

    CAS  Google Scholar 

  32. Chen R, Chung SH (2013) Complex structures between the N-type calcium channel (Ca2.2) and ω-conotoxin GVIA predicted via molecular dynamics. Biochemistry 52:3765–3772

  33. Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM, Scheuer T, Zheng N, Catterall WA (2014) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505:56–61

  34. Goonasekera SA, Beard NA, Groom L, Kimura T, Lyfenko AD, Rosenfeld A, Marty I, Dulhunty AF, Dirksen RT (2007) Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. J Gen Physiol 130:365–378

    Article  CAS  Google Scholar 

  35. Smith JS, Imagawa T, Ma J, Fill M, Campbell KP, Coronado R (1988) Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J Gen Physiol 92:1–26

    Article  CAS  Google Scholar 

  36. Lindsay AR, Manning SD, Williams AJ (1991) Monovalent cation conductance in the ryanodine receptor-channel of sheep cardiac muscle sarcoplasmic reticulum. J Physiol 439:463–480

    Article  CAS  Google Scholar 

  37. Tinker A, Williams AJ (1992) Divalent cation conduction in the ryanodine receptor channel of sheep cardiac muscle sarcoplasmic reticulum. J Gen Physiol 100:479–493

    Article  CAS  Google Scholar 

Download references

Acknowledgments

W.B.F. thanks the National Science Council for financial support (NSC101-2112-M-010-002-MY3). R.S. was supported by a Ph.D. scholarship from the Heidelberg Medical School and the Baden-Württemberg-Stipendium. R.H.A.F is grateful for the financial support of the German Excellence Initiative II–Global Networks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang B. Fischer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2845 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilling, R., Fink, R.H.A. & Fischer, W.B. Interaction of ions with the luminal sides of wild-type and mutated skeletal muscle ryanodine receptors. J Mol Model 22, 37 (2016). https://doi.org/10.1007/s00894-015-2906-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2906-8

Keywords

Navigation