Skip to main content
Log in

Theoretical study of the Wittig reaction of cyclic ketones with phosphorus ylide

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The Wittig reaction of cyclopropanone, cyclobutanone and cyclopentanone with phosphorus ylide (Me3P = CH2) in gas phase was investigated computationally at B3LYP/6-31G** level of theory. In the Wittig reaction of cyclic ketones, two transition states (TS1 and TS2), corresponding to formation and decomposition of oxaphosphetane (OP) were located and investigated. Two loosely bound intermediates, a reactant complex (RC) and a product complex (PC) were also found. In the reaction of cyclopropanone, cyclobutanone and cyclopentanone, two oxaphosphetanes (OP1 and OP2) were predicted. OP1 initially formed was converted into OP2 by pseudorotation. In contrast to the reactions with cyclobutanone and cyclopentanone, an early TS1 was found in the reaction of cyclopropanone. The order of first activation energy barrier relative to reactant total energy was found to be cyclopropanone (−4.97 kcal mol−1) < cyclobutanone (0.30 kcal mol−1) < cyclopentanone (3.60 kcal mol−1).

The Wittig reaction of monocyclic ketones with phosphorus ylide Me3PCH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. That the Wittig reaction of non-stabilized ylides proceeds through initial electron transfer from the ylide to the carbonyl group has been suggested by several authors., see [15, 16]

  2. This suggestion has not been viewed formally overall because of its inconsistency with other observations, See [4, 14]

References

  1. Wittig G, Schollkopf U (1954) Über triphenyl-phosphin-methylene alsolefinbildendereagenzien (I. Mitteil). Chem Ber 87:1318–1330. doi:10.1002/cber.19540870919

    Article  Google Scholar 

  2. Wittig G (1964) Variationen zu einem thema von staudinger; einbeitragzur geschichte der phosphororganischen carbonyl-olefinierung. Pure Appl Chem 9:245–254. doi:10.1351/pac196409020245

    Article  CAS  Google Scholar 

  3. Johnson AW (1993) Ylides and imines of phosphorus. Wiley, New York

    Google Scholar 

  4. Maryanoff BE, Reitz AB (1989) The Wittig olefination reaction and modifications involving phosphoryl stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem Rev 89:863–927. doi:10.1021/cr00094a007

    Article  CAS  Google Scholar 

  5. Vedejs E, Peterson MJ (1994) Stereochemistry and mechanism of the Wittig reaction. In: Eliel EL, Wilen SH (eds) Topics in stereochemistry, vol 21. Wiley, Hoboken, pp 1–157. doi: 10.1002/9780470147306.ch1

  6. Vedejs E, Snoble KAJ (1973) Direct observation of oxaphosphetanes from typical Wittig reactions. J Am Chem Soc 95:5778–5780. doi:10.1021/ja00798a066

    Article  CAS  Google Scholar 

  7. Vedejs E, Meier GP, Snoble KAJ (1981) Low-temperature characterization of the intermediates in the Wittig reaction. J Am Chem Soc 103:2823–2831. doi:10.1021/ja00400a055

    Article  CAS  Google Scholar 

  8. Reitz AB, Mutter MS, Maryanoff BE (1984) Observation of cis and trans oxaphosphetanes in the Wittig reaction by high-field 31P NMR spectroscopy. J Am Chem Soc 106:1873–1875. doi:10.1021/ja00318a073

    Article  CAS  Google Scholar 

  9. Maryanoff BE, Reitz AB, Mutter MS, Inners RR, Almond HR Jr, Whittle RR, Olofson RA (1986) Stereochemistry and mechanism of the Wittig reaction. Diastereomeric reaction intermediates and analysis of the reaction course. J Am Chem Soc 108:7664–7678. doi:10.1021/ja00284a034

    Article  CAS  Google Scholar 

  10. Vedejs E, Marth CF (1989) Oxaphosphetane pseudorotation: rates and mechanistic significance in the Wittig reaction. J Am Chem Soc 111:1519–1520. doi:10.1021/ja00186a068

    Article  CAS  Google Scholar 

  11. Bangerter F, Karpf M, Meier LA, Rys P, Skabal P (1998) Observation of pseudorotamers of two unconstrained Wittig intermediates, (3RS,4SR)- and (3RS,4RS)-4-cyclohexyl-2-ethyl-3,4-dimethyl-2,2-diphenyl-1,2λ5-oxaphosphetane, by dynamic 31P NMR spectroscopy: line-shape analyses, conformations, and decomposition kinetics. J Am Chem Soc 120:10653–10659. doi:10.1021/ja974332o

    Article  CAS  Google Scholar 

  12. Appel M, Blaurock S, Berger S (2002) A Wittig reaction with 2‐furyl substituents at the phosphorus atom: improved (Z) selectivity and isolation of a stable oxaphosphetane intermediate. Eur J Org Chem 2002:1143–1148. doi:10.1002/1099-0690(200204)2002:7<1143::AID-EJOC1143>3.0.CO;2-G

    Article  Google Scholar 

  13. Vedejs E, Fleck TJ (1989) Kinetic (not equilibrium) factors are dominant in Wittig reactions of conjugated ylides. J Am Chem Soc 111:5861–5871. doi:10.1021/ja00197a055

    Article  CAS  Google Scholar 

  14. Vedejs E, Peterson MJ (1996) In: Snieckus V (ed) In advances in carbanion chemistry. Jai Press Inc, Greenwich, pp 1–85

    Google Scholar 

  15. Olah GA, Krishnamurthy VV (1982) Unusual solvent effects in the Wittig reaction of some ketones indicating initial one-electron transfer. J Am Chem Soc 104:3987–3990. doi:10.1021/ja00378a035

    Article  CAS  Google Scholar 

  16. Yamataka H, Nagareda K, Takatsuka T, Ando K, Hanafusa T, Nagase S (1993) Distinction between polar and electron-transfer routes. A mechanistic study on the Wittig reactions of nonstabilizedylides. J Am Chem Soc 115:8570–8576. doi:10.1021/ja00072a008

    Article  CAS  Google Scholar 

  17. Vedejs E, Marth CF (1990) Mechanism of Wittig reaction: evidence against betaine intermediates. J Am Chem Soc 112:3905–3909. doi:10.1021/ja00166a026

    Article  CAS  Google Scholar 

  18. Witschard G, Griffin CE (1964) The Wittig reaction with five-and six-membered cyclic ketones and their benzylidene derivatives. J Org Chem 29:2335–2340. doi:10.1021/jo01031a057

    Article  CAS  Google Scholar 

  19. Wu J, Li D, Wu H, Sun L, Dai W-M (2006) Microwave-assisted regioselective olefinations of cyclic mono- and di-ketones with a stabilized phosphorus ylide. Tetrahedron 62:4643–4650. doi:10.1016/j.tet.2005.12.060

    Article  CAS  Google Scholar 

  20. Wu J, Wu H, Wei S, Dai W-M (2004) Highly regioselective Wittig reactions of cyclic ketones with a stabilized phosphorus ylide under controlled microwave heating. Tetrahedron Lett 45:4401–4404. doi:10.1016/j.tetlet.2004.03.198

    Article  CAS  Google Scholar 

  21. Ghosh A, Chakraborty I, Adarsh NN, Lahiri S (2010) Wittig-selectivity in mixed ketones: exploring 1, 3-interaction and enolization. Tetrahedron 66:164–171. doi:10.1016/j.tet.2009.11.006

    Article  CAS  Google Scholar 

  22. Mari F, Lahti PM, McEwen WE (1990) Molecular modeling oxaphosphetane intermediates of Wittig olefination reactions. Heteroat Chem 1:255–259. doi:10.1002/hc.520010311

    Article  CAS  Google Scholar 

  23. Mari F, Lahti PM, McEwen WE (1991) Molecular modeling of the Wittig olefination reaction: part 2: a molecular orbital approach at the MNDO-PM3 level. Heteroat Chem 2:265–276. doi:10.1002/hc.520020208

    Article  CAS  Google Scholar 

  24. Mari F, Lahti PM, McEwen WE (1992) A theoretical study of the Wittig olefination reaction: MNDO-PM3 treatment of the Wittig half-reaction of unstabilizedylides with aldehydes. J Am Chem Soc 114:813–821. doi:10.1021/ja00029a002

    Article  CAS  Google Scholar 

  25. Yamataka H, Hanafusa T, Nagase S, Kurakake T (1991) Theoretical study on the transition state of oxaphosphetane formation between ethylidenetriphenylphosphorane and acetaldehyde. Heteroat Chem 2:465–468. doi:10.1002/hc.520020407

    Article  CAS  Google Scholar 

  26. Holler R, Lischka H (1980) A theoretical investigation on the model Wittig reaction PH3CH2 + CH2O → PH3O + C2H4. J Am Chem Soc 102:4632–4635. doi:10.1021/ja00534a011

    Article  Google Scholar 

  27. Volatron F, Eisenstein O (1984) Theoretical study of the reactivity of phosphonium and sulfoniumylides with carbonyl groups. J Am Chem Soc 106:6117–6119. doi:10.1021/ja00332a081

    Article  CAS  Google Scholar 

  28. Volatron F, Eisenstein O (1987) Wittig vs Corey-Chaykovsky reaction. A theoretical study of the reactivity of phosphoniummethylide and sulfoniummethylide with formaldehyde. J Am Chem Soc 109:1–14. doi:10.1021/ja00235a001

    Article  CAS  Google Scholar 

  29. Naito T, Nagase S, Yamataka H (1994) Theoretical study of the structure and reactivity of ylides of N, P, As, Sb, and Bi. J Am Chem Soc 116:10080–10088. doi:10.1021/ja00101a029

    Article  CAS  Google Scholar 

  30. Restrepo-Cossio AA, Gonzalez CA, Mari F (1998) Comparative Ab initio treatment (hartree-fock, density functional theory, MP2, and quadratic configuration interactions) of the cycloaddition of phosphorus ylides with formaldehyde in the gas phase. J Phys Chem A 102:6993–7000. doi:10.1021/jp981085h

    Article  CAS  Google Scholar 

  31. Lu WC, Wong NB, Zhang RQ (2002) Theoretical study on the substituent effect of a Wittig reaction. Theor Chem Acc 107:206–210. doi:10.1007/s00214-001-0320-z

    Article  CAS  Google Scholar 

  32. Robiette R, Richardson J, Aggarwal VK, Harvey JN (2006) Reactivity and selectivity in the Wittig reaction: a computational study. J Am Chem Soc 128:2394–2409. doi:10.1021/ja056650q

    Article  CAS  Google Scholar 

  33. Yamataka H, Nagase S (1998) Theoretical calculations on the Wittig reaction revisited. J Am Chem Soc 120:7530–7536. doi:10.1021/ja974237f

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02. Gaussian Inc, Wallingford

    Google Scholar 

  35. Hariharan PC, Pople JA (1973) The influence of polarization functions on molecular orbital hydrogenation energies. Theoret Chim Acta (Berl) 28:213–222

    Article  CAS  Google Scholar 

  36. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. doi:10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. doi:10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  38. Fukui K (1970) Formulation of the reaction coordinate. J Phys Chem 74:4161–4163. doi:10.1021/j100717a029

    Article  CAS  Google Scholar 

  39. Restrepo-Cossio AA, Cano H, Gonzalez CA, Mari F (1997) Molecular modeling of the Wittig olefination reaction: MNDO-PM3 and Ab initio treatment of the Wittig reaction of unstabilized, semistabilized and stabilized ylides with acetaldehyde. Heteroat Chem 8:557–569. doi:10.1002/(SICI)1098-1071(1997)8:6<557::AID-HC16>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  40. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc, Shawnee Mission

    Google Scholar 

  41. Bach RD, Dmitrenko O (2006) The effect of carbonyl substitution on the strain energy of small ring compounds and their six-member ring reference compounds. J Am Chem Soc 128:4598–4611. doi:10.1021/ja055086g

    Article  CAS  Google Scholar 

  42. Hammond GS (1955) A correlation of reaction rates. J Am Chem Soc 77:334–338. doi:10.1021/ja01607a027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (N.J.) is thankful to the council of scientific and industrial research (CSIR), Government of India for the award of a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pompozhi Protasis Thankachan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Total electronic energy, enthalpy and Gibbs free energy (in Hartree) and the Cartesian coordinates of all optimized structures with imaginary frequencies of transition states (TS) are given in the supporting information. (DOCX 524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarwal, N., Thankachan, P.P. Theoretical study of the Wittig reaction of cyclic ketones with phosphorus ylide. J Mol Model 21, 87 (2015). https://doi.org/10.1007/s00894-015-2571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2571-y

Keywords

Navigation