Skip to main content

Advertisement

Log in

Computational studies of water and carbon dioxide interactions with cellobiose

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

B3LYP/6–311++G** with dispersion correction (DFT-D) was used to study local and global minimum energy structures of water (H2O) or carbon dioxide (CO2) bonding with a pair of cellobiose molecules. The calculations showed that neither the H2O nor the CO2 prefer to be between the cellobiose molecules, and that the minimum energy structures occur when these molecules bond to the outer surface of the cellobiose pair. The calculations also showed that the low energy structures have a larger number of inter-cellobiose hydrogen bonds than the high energy structures. These results indicate that penetration of H2O or CO2 between adjacent cellobiose pairs, which would assist steam or supercritical CO2 (SC-CO2) explosion of cellulose, is not energetically favored. Comparison of the energies obtained with DFT-D and DFT (the same method but without dispersion correction) show that both hydrogen bonds and van der Waals interactions play an important role in cellobiose-cellobiose interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang Q, Bulone V, Ågren H, Tu Y (2011) A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18:207–221

    Article  CAS  Google Scholar 

  2. Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157

    Article  CAS  Google Scholar 

  3. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  CAS  Google Scholar 

  4. Fan LT, Lee Y, Beardmore DH (1980) Mechanism of the enzymatic hydrolysis of cellulose: effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng 22:177–199

    Article  CAS  Google Scholar 

  5. Wyman CE (1996) 1: Ethanol production from lignocellulosic biomass: overview. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, pp 1–18

    Google Scholar 

  6. Mason W H (1926) Process and apparatus for disintegration of wood and the like. US Pat. 1578609

  7. Babcock L W (1932) Method of producing fermentable sugars and alcohol from wood. US Pat. 1855464

  8. Dahman Y, Volynets B (2011) Assessment of pretreatments and enzymatic hydrolysis of wheat straw as a sugar source for bioprocess industry. Int J Energy Environ (IJEE) 2:427–446

    Google Scholar 

  9. Martin-Sampedro R, Rojas OJ, Capanema EA, Hoeger I, Villar JC (2011) Lignin changes after steam explosion and laccase-mediator treatment of eucalyptus wood chips. J Agric Food Chem 59:8761–8769

    Article  CAS  Google Scholar 

  10. Jedvert K, Theliander H, Saltberg A, Lindström ME (2012) Mild steam explosion and chemical pre-treatment of Norway spruce. Bio Resources 7:2051–2074

    CAS  Google Scholar 

  11. Chacha N, Toven K, Mtui G, Katima J, Mrema G (2011) Steam pretreatment of pine (Pinus patula) wood residue for the production of reducing sugars. Cellul Chem Technol 45:495–501

    CAS  Google Scholar 

  12. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  13. Zheng Y, Lin HM, Wen J, Cao N, Yu X, Tsao GT (1995) Supercritical carbon dioxide explosion as a pretreatment for cellulose hydrolysis. Biotechnol Lett 17:845–850

    Article  CAS  Google Scholar 

  14. Zheng Y, Tsao GT (1996) Avisel hydrolysis by cellulose enzyme in supercritical CO2. Biotechnol Lett 18:451–454

    Article  CAS  Google Scholar 

  15. Zheng Y, Lin H, Tsao GT (1998) Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol Prog 14:890–896

    Article  CAS  Google Scholar 

  16. Narayanaswamya N, Faik A, Goetz DJ, Gu T (2011) Supercritical carbon dioxide pretreatment of corn stover and switchgrass for lignocellulosic ethanol production. Bioresour Technol 102:6995–7000

    Article  Google Scholar 

  17. Alinia R, Zabihi S, Esmaeilzadeh F, Kalajahi F (2010) Pretreatment of wheat straw by supercritical CO2 and its enzymatic hydrolysis for sugar production. J Biosystems Eng 107:61–66

    Article  Google Scholar 

  18. Muratov G, Kim C (2002) Enzymatic hydrolysis of cotton fibers in supercritical CO2. Biotechnol Bioprocess Eng 7:85–88

    Article  CAS  Google Scholar 

  19. Gua T, Held MA, Faikc A (2013) Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production Environ. Technol 34:1735–1749

    Google Scholar 

  20. Stortz CA, Johnson GP, French AD, Csonka GI (2009) Comparison of different force fields for the study of disaccharides. J Carbohydr Res 344:2217–2228

    Article  CAS  Google Scholar 

  21. Bergenstråhle M, Matthews J, Crowley M, Brady J (2010) Cellulose crystal structure and force fields. International Conference on Nanotechnology for the forest products industry. Otaniemi, Espoo, Finland

  22. Payal RS, Bharath R, Periyasamy G, Balasubramanian S (2012) Density functional theory investigations on the structure and dissolution mechanisms for cellobiose and xylan in an ionic liquid: gas phase and cluster calculations. J Phys Chem B 116:833–840

    Article  CAS  Google Scholar 

  23. Momany FA, Schnupf U (2011) DFTMD studies of β-cellobiose: conformational preference using implicit solvent. Carbohydr Res 346:619–630

    Article  CAS  Google Scholar 

  24. French AD, Johnson GP (2006) Quantum mechanics studies of cellobiose conformations. Can J Chem 84:603–612

    Article  CAS  Google Scholar 

  25. French AD, Johnson GP (2008) Roles of starting geometries in quantum mechanics studies of cellobiose. Mol Simul 34:365–372

    Article  CAS  Google Scholar 

  26. Bazooyar F, Taherzadeh M, Niklasson C, Bolton K (2013) Molecular modelling of cellulose dissolution. J Comput Theor Nanosc 10:2639–2646

    Article  CAS  Google Scholar 

  27. Bazooyar F, Momany FA, Bolton K (2012) Validating empirical force fields for molecular-level simulation of cellulose dissolution. Comput Theor Chem 984:119–127

    Article  CAS  Google Scholar 

  28. Strati GL, Willett JL, Momany FA (2002) Ab initio computational study of β-cellobiose conformers using B3LYP/6-311++ G**. Carbohydr Res 337:1833–1849

    Article  CAS  Google Scholar 

  29. Strati GL, Willett JL, Momany FA (2002) A DFT/ab initio study of hydrogen bonding and conformational preference in model cellobiose analogs using B3LYP/6-311++ G**. Carbohydr Res 337:1851–1859

    Article  CAS  Google Scholar 

  30. Bosma WB, Appell M, Willett JL, Momany FA (2006) Stepwise hydration of cellobiose by DFT methods: 2. Energy contributions to relative stabilities of cellobiose (H2 O) 1–4 complexes. THEOCHEM 776:1–19

    Article  CAS  Google Scholar 

  31. Momany FA, Willett JL (2000) Computational studies on carbohydrates: I. Density functional ab initio geometry optimization on maltose conformations. J Comput Chem 21:1204–1219

    Article  CAS  Google Scholar 

  32. French AD, Johnson GP (2004) Advanced conformational energy surfaces for cellobiose. Cellulose 11:449–462

    Article  CAS  Google Scholar 

  33. Aldred P http://www.accelrys.com/resource-center/case-studies /archive /studies /cellulose.html. Accessed 12 April 2014

  34. Bazooyar F, Bolton K (2014) Molecular-level simulations of cellulose steam explosion. Quantum Matter. doi:10.1166/qm.2015.1178

  35. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  36. Piacenza M, Grimme S (2005) Van der Waals interactions in aromatic systems: structure and energetics of dimers and trimers of pyridine. Chem Phys Chem 6:1554–1558

    CAS  Google Scholar 

  37. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  38. Grimme S (2006) Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  39. Becke AD (1993) Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  40. Lee C, Yang W, Parr RG (1998) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  Google Scholar 

  41. Miehlich B, Savin A, Stoll H, Preuss H (1989) Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem Phys Lett 157:200–206

    Article  CAS  Google Scholar 

  42. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  43. Lii JH, Ma B, Allinger NL (1999) Importance of selecting proper basis set in quantum mechanical studies of potential energy surfaces of carbohydrates. J Comput Chem 20:1593–1603

    Article  CAS  Google Scholar 

  44. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Matsunaga N, Koseki S, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  45. Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 102:7338–7364

    Article  CAS  Google Scholar 

  46. Bunte SW, Sun H (2000) Molecular modeling of energetic materials: the parameterization and validation of nitrate esters in the COMPASS force field. J Phys Chem B 104:2477–2489

    Article  CAS  Google Scholar 

  47. Sarko A, Muggli R (1974) Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose II. Macromolecules 7:486–494

    Article  CAS  Google Scholar 

  48. Wu X, Wagner R, Raman A, Moon R, Martini A (2010) Elastic deformation mechanics of cellulose nanocrystals. Miner, Met Mater Soc (TMS) 2:689–695

    CAS  Google Scholar 

  49. Wu X, Moon R, Martini A (2011) Calculation of single chain cellulose elasticity using fully atomistic modelling. Tech Assoc Pulp Paper Indust J (TAPPI J) 10:37–43

    CAS  Google Scholar 

  50. Miyamoto H, Umemura M, Aoyagi T, Yamane C, Ueda K, Takahashi K (2009) Structural reorganization of molecular sheets derived from cellulose II by molecular dynamics simulations. Carbohydr Res 344:1085–1094

    Article  CAS  Google Scholar 

  51. Miyamoto H, Yamane C, Ueda K (2013) Structural changes in the molecular sheets along (hk0) planes derived from cellulose Iβ by molecular dynamics simulations. Cellulose 20:1089–1098

    Article  CAS  Google Scholar 

  52. Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13:291–307

    Article  CAS  Google Scholar 

  53. Bolton K, Nordholm S (1994) An evaluation of the Gauss-Radau algorithm for the simulation of chemical dynamics. J Comput Phys 113:320–335

    Article  CAS  Google Scholar 

  54. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:149–154

    Article  Google Scholar 

  55. Ermer O (1976) Calculation of molecular properties using force fields. Applications in organic chemistry. Struct Bond 27:161–211

    Article  CAS  Google Scholar 

  56. Levitt M, Lifson S (1969) Refinement of protein conformations using a macromolecular. J Mol Biol 46:269–279

    Article  CAS  Google Scholar 

  57. Lalanne P, Tassaing T, Danten Y, Cansell F, Tucker SC, Besnard M (2004) CO2-ethanol interaction studied by vibrational spectroscopy in supercritical CO2. J Phys Chem A 108:2617–2624

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Stiftelsen Föreningssparbanken Sjuhärad and The Carl Trygger Foundation for Scientific Research is gratefully acknowledged. GAMESS-US, version 1 OCT 2010 (R1) was used at the high performance computer cluster Kalkyl at UPPMAX (Uppsala Multidisciplinary Centre for Advanced Computational Science), Uppsala Sweden. Calculations using the COMPASS force field were done using the program from Accelrys Software Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faranak Bazooyar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazooyar, F., Bohlén, M. & Bolton, K. Computational studies of water and carbon dioxide interactions with cellobiose. J Mol Model 21, 16 (2015). https://doi.org/10.1007/s00894-014-2553-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2553-5

Keywords

Navigation