Skip to main content
Log in

Structure, vibrational, and optical properties of platinum cluster: a density functional theory approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Using density functional theory, stability, chemical, and optical properties of small platinum clusters, Ptn (n = 2 to 10) have been investigated. An attempt has been made to establish a correlation between stability and chemical reactivity parameters. The calculated geometries are in agreement with the available experimental and theoretical results. The atom addition energy change (ΔE1) and stability function (ΔE2) reveal that Pt7 is more stable than its neighboring clusters. Very good agreement of the calculated electron affinity with the available experimental results has been observed. The polarizability of the Ptn clusters depends almost linearly on the number of atoms. A correlation between the static polarizability and ionization potential is found, paving a way to calculate polarizabilty of larger clusters from their ionization potential. The calculated vibrational frequencies are compared with available experimental and theoretical results and good agreement between them has been established. In general, the prominent peak of molar absorption coefficient is shifting toward the lower energy side when cluster size grows. Our DOS calculation suggests that d orbital is primarily responsible for HOMO position and s orbital is responsible for LUMO position.

Stability and reactivity of platinum cluster

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sarkar U, Blundell S (2009) Structure and thermodynamics of Fe55, Co55, and Ni55 clusters supported on a surface. Phys Rev B 79:125441–7

    Article  Google Scholar 

  2. Eberhardt W (2002) Clusters as new materials. Surf Sci 500:242–270

    Article  CAS  Google Scholar 

  3. Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Mucherie SC, Redfern PC, Mehmood F, Zapol P (2009) Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat Mater 8:213–216

    Article  CAS  Google Scholar 

  4. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299:1688–1691

    Article  CAS  Google Scholar 

  5. Bond GC (1991) Chemistry of the platinum group metals: recent developments. Elsevier, Amsterdam

    Google Scholar 

  6. Vielstich W, Lamm A, Gasteiger H (2003) Handbook of fuel cells: fundamentals, technology applications. Wiley West, Sussex

    Google Scholar 

  7. Yuan Q, Zhou Z, Zhuang J, Wang X (2010) Pd–Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities. Chem Commun 46:1491–1493

    Article  CAS  Google Scholar 

  8. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735

    Article  CAS  Google Scholar 

  9. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222

    Article  CAS  Google Scholar 

  10. Xu Y, Shelton WA, Schneider WF (2006) Effect of particle size on the oxidizability of platinum clusters. J Phys Chem A 110:5839–5846

    Article  CAS  Google Scholar 

  11. Ghanty TK, Ghosh SK (1993) Correlation between hardness, polarizability, and size of atoms, molecules, and clusters. J Phys Chem 97:4951–4953

    Article  CAS  Google Scholar 

  12. Bedamani N, Sarkar U (2014) A density functional study of chemical, magnetic and thermodynamic properties of small palladium clusters. Mol Simul 40:1255–1264

    Article  Google Scholar 

  13. Dai D, Balasubramanian K (1992) Potential energy surfaces for Pt3 + H and Pd3 + H interactions. J Phys Chem 96:3279–3282

    Article  CAS  Google Scholar 

  14. Morse MD (1986) Clusters of transition-metal atoms. Chem Rev 86:1049–1109

    Article  CAS  Google Scholar 

  15. Duncan TM, Zilm KW, Hamilton DA, Root TW (1989) Adsorbed states of CO on dispersed metals: a high-resolution solid-state NMR study. J Phys Chem 93:2583–2590

    Article  CAS  Google Scholar 

  16. Martin TP, Bergmann T, Golich G, Lange T (1991) Evidence for icosahedral shell structure in large magnesium clusters. Chem Phys Lett 176:343–347

    Article  CAS  Google Scholar 

  17. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  18. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  19. Parr RG, Lv S, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  20. Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091

    Article  CAS  Google Scholar 

  21. Parthasarathi R, Padmanabhan J, Elango M, Chitra K, Subramanian V, Chattaraj PK (2006) pKa Prediction using group philicity. J Phys Chem A 110:6540–6544

    Article  CAS  Google Scholar 

  22. Chattaraj PK, Sengupta S (1996) Popular electronic structure principles in a dynamical context. J Phys Chem 100:16126–16130

    Article  CAS  Google Scholar 

  23. Ghanty TK, Ghosh SK (1996) A Density functional approach to hardness, polarizability, and valency of molecules in chemical reactions. J Phys Chem 100:12295–12298

    Article  CAS  Google Scholar 

  24. Chamorro E, Chattaraj PK, Fuentealba P (2003) Variation of the electrophilicity index along the reaction path. J Phys Chem A 107:7068–7072

    Article  CAS  Google Scholar 

  25. Parthasarathi R, Elango M, Subramanian V (2005) Variation of electrophilicity during molecular vibrations and internal rotations. Theor Chem Accounts 113:257–266

    Article  CAS  Google Scholar 

  26. Pan S, Sola M, Chattaraj PK (2013) On the validity of the maximum hardness principle and the minimum electrophilicity principle during chemical reactions. J Phys Chem 117:1843–1852

    Article  CAS  Google Scholar 

  27. Chandrakumar KRS, Ghanty TK, Ghosh SK (2005) Ab initio studies on the polarizability of lithium clusters: some unusual results. Int J Quantum Chem 105:166–173

    Article  CAS  Google Scholar 

  28. Jaque P, Toro-Labbé A (2002) Characterization of copper clusters through the use of density functional theory reactivity descriptors. J Chem Phys 117:3208–3218

    Article  CAS  Google Scholar 

  29. Ayers PW, Proft FD, Geerlings P (2007) Comparison of the utility of the shape function and electron density for predicting periodic properties: atomic ionization potentials. Phys Rev A 75:012508–8

    Article  Google Scholar 

  30. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: the Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  31. Poater A, Duran M, Jaque P, Toro-Labbe A, Sola M (2006) Validity of the minimum polarizability principle in molecular vibrations and internal rotations: an ab initio SCF study. J Phys Chem B 110:6526–6536

    Article  CAS  Google Scholar 

  32. Barbatti M, Aquino AJA, Liscka H (2010) The UV absorption of nucleobases: semi-classical ab initio simulations. Phys Chem Chem Phys 12:4959–4967

    Article  CAS  Google Scholar 

  33. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision C.01. Gaussian, Inc, Wallingford

    Google Scholar 

  35. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. Perdew JJ, Yang W (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  Google Scholar 

  38. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  39. Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  40. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  41. Barbatti M, Granucci G, Persico M, Ruckenbauer M, Vazdar M, Eckert-Maksić M, Lischka H (2007) The on-the-fly surface-hopping program system NEWTON-X: application to ab initio simulation of the nonadiabatic photodynamics of benchmark. J Photochem Photobiol A 190:228–240

    Article  CAS  Google Scholar 

  42. Barbatti M, Granucci G, Ruckenbauer M, Plasser F, Pittner J, Persico M, Lischka H (2013) NEWTON-X: a package for Newtonian dynamics close to the crossing seam, version 1.4, www.newtonx.org

  43. Taylor S, Lemire GW, Hamrick YM, Fu Z, Morse MD (1988) Resonant two-photon ionization spectroscopy of jet-cooled Pt2. J Chem Phys 89:5517–5523

    Article  CAS  Google Scholar 

  44. Fortunelli A (1999) Density functional calculations on small platinum clusters: Pt n q (n = 1–4, q = 0,±1). J Mol Struct THEOCHEM 493:233–240

    Article  CAS  Google Scholar 

  45. Grushow A, Ervin KM (1997) Ligand and metal binding energies in platinum carbonyl cluster anions: collision-induced dissociation of Ptm − and Ptm(CO)n−. J Chem Phys 106:9580–9593

    Article  CAS  Google Scholar 

  46. Yang SH, Drabold DA, Adams JB, Ordejon P, Glassford K (1997) Density functional studies of small platinum clusters. J Phys Condens Matter 9:L39–L45

    Article  CAS  Google Scholar 

  47. Kumar V, Kawazoe Y (2008) Evolution of atomic and electronic structure of Pt clusters: planar, layered, pyramidal, cage cubic, and octahedral growth. Phys Rev B 77:205418–10

    Article  Google Scholar 

  48. Tian WQ, Ge M, Sahu BR, Wang D, Yamada T, Mashiko S (2004) Geometrical and electronic structure of the Pt7 cluster: a density functional study. J Phys Chem A 108:3806–3812

    Article  CAS  Google Scholar 

  49. Gibson ND, Davies BJ, Larson DJ (1993) The electron affinity of platinum. J Chem Phys 98:5104–5105

    Article  CAS  Google Scholar 

  50. Ho J, Polak ML, Ervin KM, Lineberger WC (1993) Photoelectron spectroscopy of nickel group dimers: Ni 2, Pd 2, and Pt 2. J Chem Phys 99:8542–8551

  51. Ervin KM, Ho J, Lineberger WC (1988) Electronic and vibrational structure of transition metal trimers: photoelectron spectra of Ni 3, Pd 3, and Pt 3. J Chem Phys 89:4514–4521

  52. Pontius N, Bechthold PS, Neeb M, Eberhardt W (2000) Femtosecond multi-photon photoemission of small transition metal cluster anions. J Electron Spectrosc Relat Phenom 106:107–116

    Article  CAS  Google Scholar 

  53. Wong K, Vongehr S, Kresin VV (2003) Work functions, ionization potentials, and in between: scaling relations based on the image-charge model. Phys Rev B 67:035406–9

    Article  Google Scholar 

  54. Derry GN, Ji-Zhong Z (1989) Work function of Pt(111). Phys Rev B 39:1940–1941

    Article  CAS  Google Scholar 

  55. Miller TM (2002) CRC handbook of chemistry and physics. CRC, New York

    Google Scholar 

  56. Mohajeri A, Alipour M (2011) On the optical, electronic, and structural properties of zinc sulfide nanoclusters. Int J Quantum Chem 111:3841–3850

    CAS  Google Scholar 

  57. Jansson K, Scullman R (1976) Optical absorption spectra of PtO and Pt2 in rare-gas matrices. J Mol Spectrosc 61:299–312

    Article  CAS  Google Scholar 

  58. Solov’yov IA, Solov’yov AV, Greiner W (2004) Optical response of small magnesium clusters. J Phys B Atomic Mol Opt Phys 37:L137–L145

    Article  Google Scholar 

  59. Hughbanks T, Hoffmann R (1983) Chains of trans-edge-sharing molybdenum octahedra: metal-metal bonding in extended systems. J Am Chem Soc 105:3528–3537

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr U. Sarkar acknowledges the support from SHARCNET Canada for providing the computational facilities for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Sarkar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1271 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N.B., Sarkar, U. Structure, vibrational, and optical properties of platinum cluster: a density functional theory approach. J Mol Model 20, 2537 (2014). https://doi.org/10.1007/s00894-014-2537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2537-5

Keywords

Navigation