Skip to main content
Log in

Separation of a heavy metal from water through a membrane containing boron nitride nanotubes: molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations were performed to investigate the separation of zinc ions as a heavy metal from water using boron nitride nanotubes. The studied systems included boron nitride (BN) nanotubes embedded in a silicon-nitride membrane immersed in an aqueous solution of ZnCl2. An external electric field was applied to the system along the axis of the BN nanotubes. The results show that the (7,7) and (8,8) BN nanotubes were exclusively selective of ions. The (7,7) BN nanotube selectively conducted Zn2+ ions, while the (8,8) BN nanotube selectively conducted Cl ions. The results were confirmed using additional simulated parameters. The results indicate that the passage of ions through nanotubes is related to the diameter of the BN nanotubes.

Separation of zinc ions as a heavy metal from water using boron nitride nanotubes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58(1):49–52. doi:10.1016/j.seppur.2007.07.008

    Article  CAS  Google Scholar 

  2. Hsieh S-H, Horng J-J (2007) Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particles. J Univ Sci Technol Beijing 14(1):77–84. doi:10.1016/S1005-8850(07)60016-4

    Article  CAS  Google Scholar 

  3. Gao J, Sun S-P, Zhu W-P, Chung T-S (2014) Polyethyleneimine (PEI) cross-linked P84 nanofiltration (NF) hollow fiber membranes for Pb2+ removal. J Membr Sci 452(0):300–310. doi:10.1016/j.memsci.2013.10.036

    Article  CAS  Google Scholar 

  4. Han KN, Yu BY, Kwak S-Y (2012) Hyperbranched poly (amidoamine)/polysulfone composite membranes for Cd (II) removal from water. J Membr Sci 396(0):83–91. doi:10.1016/j.memsci.2011.12.048

    Article  CAS  Google Scholar 

  5. Wang R, Guan S, Sato A, Wang X, Wang Z, Yang R, Hsiao BS, Chu B (2013) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Membr Sci 446(0):376–382. doi:10.1016/j.memsci.2013.06.020

    Article  CAS  Google Scholar 

  6. Yoo H, Kwak S-Y (2013) Surface functionalization of PTFE membranes with hyperbranched poly (amidoamine) for the removal of Cu2+ ions from aqueous solution. J Membr Sci 448(0):125–134. doi:10.1016/j.memsci.2013.07.052

    Article  CAS  Google Scholar 

  7. Zhang L, Zhao Y-H, Bai R (2011) Development of a multifunctional membrane for chromatic warning and enhanced adsorptive removal of heavy metal ions: application to cadmium. J Membr Sci 379(1–2):69–79. doi:10.1016/j.memsci.2011.05.044

    Article  CAS  Google Scholar 

  8. Huang K, Xiu Y, Zhu H (2013) Removal of heavy metal ions from aqueous solution by chemically modified mangosteen pericarp. Desalin Water Treat 51:1–9. doi:10.1080/19443994.2013.838522

    Article  Google Scholar 

  9. Oyaro N, Juddy O, Murago EN, Gitonga E (2007) The contents of Pb, Cu, Zn and Cd in meat in nairobi, Kenya. Kenya Int J Food Agric Environ 5:119–121

    CAS  Google Scholar 

  10. Alyüz B, Veli S (2009) Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. J Hazard Mater 167(1–3):482–488. doi:10.1016/j.jhazmat.2009.01.006

    Article  Google Scholar 

  11. El Samrani AG, Lartiges BS, Villiéras F (2008) Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res 42(4–5):951–960. doi:10.1016/j.watres.2007.09.009

    Article  Google Scholar 

  12. Ghosh P, Samanta AN, Ray S (2011) Reduction of COD and removal of Zn2+ from rayon industry wastewater by combined electro-fenton treatment and chemical precipitation. Desalination 266(1–3):213–217. doi:10.1016/j.desal.2010.08.029

    Article  CAS  Google Scholar 

  13. Cséfalvay E, Pauer V, Mizsey P (2009) Recovery of copper from process waters by nanofiltration and reverse osmosis. Desalination 240(1–3):132–142. doi:10.1016/j.desal.2007.11.070

    Article  Google Scholar 

  14. Yanagisawa H, Matsumoto Y, Machida M (2010) Adsorption of Zn (II) and Cd (II) ions onto magnesium and activated carbon composite in aqueous solution. Appl Surf Sci 256(6):1619–1623. doi:10.1016/j.apsusc.2009.10.010

    Article  CAS  Google Scholar 

  15. Alidokht L, Khataee AR, Reyhanitabar A, Oustan S (2011) Cr (VI) immobilization process in a Cr-spiked soil by zerovalent iron nanoparticles: optimization using response surface methodology. Clean 39(7):633–640. doi:10.1002/clen.201000461

    CAS  Google Scholar 

  16. Alidokht L, Khataee AR, Reyhanitabar A, Oustan S (2011) Reductive removal of Cr (VI) by starch-stabilized Fe0 nanoparticles in aqueous solution. Desalination 270(1–3):105–110. doi:10.1016/j.desal.2010.11.028

    Article  CAS  Google Scholar 

  17. Khataee AR, Kasiri MB, Alidokht L (2011) Application of response surface methodology in the optimization of photocatalytic removal of environmental pollutants using nanocatalysts. Environ Technol 32(15):1669–1684. doi:10.1080/09593330.2011.597432

    Article  CAS  Google Scholar 

  18. Reyhanitabar A, Alidokht L, Khataee AR, Oustan S (2012) Application of stabilized Fe0 nanoparticles for remediation of Cr (VI)-spiked soil. Eur J Soil Sci 63(5):724–732. doi:10.1111/j.1365-2389.2012.01447.x

    Article  CAS  Google Scholar 

  19. Golberg D, Bando Y, Tang CC, Zhi CY (2007) Boron nitride nanotubes. Adv Mater 19(18):2413–2432. doi:10.1002/adma.200700179

    Article  CAS  Google Scholar 

  20. Anota EC, Cocoletzi G, Ramírez JFS (2013) Armchair BN nanotubes—levothyroxine interactions: a molecular study. J Mol Model 19(11):4991–4996. doi:10.1007/s00894-013-1999-1

    Article  CAS  Google Scholar 

  21. Chigo Anota E, Cocoletzi G (2013) First-principles simulations of the chemical functionalization of (5,5) boron nitride nanotubes. J Mol Model 19(6):2335–2341. doi:10.1007/s00894-013-1782-3

    Article  CAS  Google Scholar 

  22. Won CY, Aluru NR (2009) A chloride ion-selective boron nitride nanotube. Chem Phys Lett 478(4–6):185–190. doi:10.1016/j.cplett.2009.07.064

    Article  CAS  Google Scholar 

  23. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, Bertozzi CR (2009) Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 131(3):890–891. doi:10.1021/ja807334b

    Article  CAS  Google Scholar 

  24. Nanok T, Artrith N, Pantu P, Bopp PA, Limtrakul J (2008) Structure and dynamics of water confined in single-wall nanotubes. J Phys Chem A 113(10):2103–2108. doi:10.1021/jp8088676

    Article  Google Scholar 

  25. Akdim B, Pachter R, Duan X, Adams WW (2003) Comparative theoretical study of single-wall carbon and boron-nitride nanotubes. Phys Rev B Condens Matter 67(24):245404

    Article  Google Scholar 

  26. Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B Condens Matter 49(7):5081–5084

    Article  CAS  Google Scholar 

  27. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269(5226):966–967. doi:10.1126/science.269.5226.966

    Article  CAS  Google Scholar 

  28. Golberg D, Bando Y, Eremets M, Takemura K, Kurashima K, Yusa H (1996) Nanotubes in boron nitride laser heated at high pressure. Appl Phys Lett 69(14):2045–2047. doi:10.1063/1.116874

    Article  CAS  Google Scholar 

  29. Lourie OR, Jones CR, Bartlett BM, Gibbons PC, Ruoff RS, Buhro WE (2000) CVD growth of boron nitride nanotubes. Chem Mater 12(7):1808–1810. doi:10.1021/cm000157q

    Article  CAS  Google Scholar 

  30. Chen Y, Willis JP (1999) Mechanochemical synthesis of boron nitride nanotubes. Mater Sci Forum 312:173–178

    Article  Google Scholar 

  31. Han W, Bando Y, Kurashima K, Sato T (1998) Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Appl Phys Lett 73(21):3085–3087. doi:10.1063/1.122680

    Article  CAS  Google Scholar 

  32. Won CY, Aluru NR (2008) Structure and dynamics of water confined in a boron nitride nanotube. J Phys Chem C 112(6):1812–1818. doi:10.1021/jp076747u

    Article  CAS  Google Scholar 

  33. Ebro H, Kim YM, Kim JH (2013) Molecular dynamics simulations in membrane-based water treatment processes: A systematic overview. J Membr Sci 438:112–125. doi:10.1016/j.memsci.2013.03.027

    Article  CAS  Google Scholar 

  34. Tang D, Kim D (2014) Temperature effect on ion selectivity of potassium and sodium ions in solution. Chem Phys 428:14–18. doi:10.1016/j.chemphys.2013.10.018

    Article  CAS  Google Scholar 

  35. Khosrozadeh A, Wang Q, Varadan VK (2014) Molecular simulations on separation of atoms with carbon nanotubes in torsion. Comput Mater Sci 81:280–283. doi:10.1016/j.commatsci.2013.08.030

    Article  CAS  Google Scholar 

  36. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363. doi:10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  37. Won CY, Aluru NR (2007) Water permeation through a subnanometer boron nitride nanotube. J Am Chem Soc 129(10):2748–2749. doi:10.1021/ja0687318

    Article  CAS  Google Scholar 

  38. Sardroodi JJ, Azamat J, Rastkar A, Yousefnia NR (2012) The preferential permeation of ions across carbon and boron nitride nanotubes. Chem Phys 403:105–112. doi:10.1016/j.chemphys.2012.05.017

    Article  CAS  Google Scholar 

  39. Kalé L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151(1):283–312. doi:10.1006/jcph.1999.6201

    Article  Google Scholar 

  40. Azamat J, Sardroodi J (2014) The permeation of potassium and chloride ions through nanotubes: a molecular simulation study. Monatsh Chem 145(6):881–890. doi:10.1007/s00706-013-1136-y

    Article  CAS  Google Scholar 

  41. Azamat J, Khataee A, Joo SW (2014) Functionalized graphene as a nanostructured membrane for removal of copper and mercury from aqueous solution: a molecular dynamics simulation study. J Mol Graphics Modell 53:112–117. doi:10.1016/j.jmgm.2014.07.013

    Article  CAS  Google Scholar 

  42. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graphics 14(1):33–308. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  43. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N⋅log (N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  44. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi:10.1002/jcc.20289

    Article  CAS  Google Scholar 

  45. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. doi:10.1063/1.445869

    Article  CAS  Google Scholar 

  46. MacKerell AD, Bashford D, Bellott DRL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616. doi:10.1021/jp973084f

    Article  CAS  Google Scholar 

  47. Kjellander R, Greberg H (1998) Mechanisms behind concentration profiles illustrated by charge and concentration distributions around ions in double layers. J Electroanal Chem 450(2):233–251. doi:10.1016/S0022-0728(97)00641-4

    Article  CAS  Google Scholar 

  48. Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in monte carlo free-energy estimation: umbrella sampling. J Comput Phys 23(2):187–199. doi:10.1016/0021-9991(77)90121-8

    Article  Google Scholar 

  49. Grossfield A (2014) WHAM: the weighted histogram analysis method, version 2.0.8. http://membrane.urmc.rochester.edu/content/wham.

  50. Heisenberg WK (1969) The structure and properties of water. Oxford University Press, Oxford

  51. Franks F (1973) Water, a comprehensive treatise. Plenum, New York.

  52. Hilder TA, Gordon D, Chung S-H (2009) Salt rejection and water transport through boron nitride nanotubes. Small 5(19):2183–2190. doi:10.1002/smll.200900349

    Article  CAS  Google Scholar 

  53. Peter C, Hummer G (2005) Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophys J 89(4):2222–2234. doi:10.1529/biophysj.105.065946

    Article  CAS  Google Scholar 

  54. Lee SH, Rasaiah JC (2009) Local dynamics and structure of the solvated hydroxide ion in water. Mol Simul 36(1):69–73. doi:10.1080/08927020903115252

    Article  Google Scholar 

  55. Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414(6860):188–190

    Article  CAS  Google Scholar 

  56. Kang JW, Byun KR, Lee JY, Kong SC, Choi YW, Hwang HJ (2004) Molecular dynamics study on the field effect ion transport in carbon nanotube. Phys E 24(3–4):349–354. doi:10.1016/j.physe.2004.06.040

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Iranian National Science Foundation (INSF) for all of the support provided (No: 92030491) and the University of Tabriz for all of the support provided. This work was funded by Grant 2011–0014246 from the National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alireza Khataee or Sang Woo Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azamat, J., Khataee, A. & Joo, S.W. Separation of a heavy metal from water through a membrane containing boron nitride nanotubes: molecular dynamics simulations. J Mol Model 20, 2468 (2014). https://doi.org/10.1007/s00894-014-2468-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2468-1

Keywords

Navigation