Skip to main content
Log in

Performance of four different force fields for simulations of dipeptide conformations: GlyGly, GlyGly, GlyGly · Cl, GlyGly · Na+ and GlyGly · (H2O)2

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Monte-Carlo conformational searches with four kinds of force fields (AMBER94, MM3*, MMFFs, and OPLS-2005) were performed on glycylglycine (GlyGly), deprotonated glycylglycine (GlyGly), glycylglycine chloride anion complex (GlyGly · Cl), glycylglycine sodium cation complex (GlyGly · Na+) and glycylglycine dihydrate [GlyGly · (H2O)2]. Combined with Hartree-Fock (HF) and second-order Møller-Plesset (MP2) optimizations, conformations within an energy of 20 kJ mol−1 were predicted. After MP2 calculations, the geometries and relative energies of the predicted structures were the same regardless of the force field used. Therefore, the performance of different force fields reflects mainly the conformational search process. For GlyGly, there was practically no difference among the four force fields. Due to the complex hydrogen bonding network when involving water, the total number of resulting conformers for GlyGly · (H2O)2 increased drastically. Moreover, the MMFFs force field fared best in finding the global minimum compared to the remaining three force fields. In describing hydrogen bonded and inter-molecular complexes, we recommend application of the MMFFs and AMBER94 force fields. Furthermore, the MMFFs and OPLS-2005 force fields have a good description of electrostatic interactions. This work will contribute to helping the reader make an optimal choice of force field, taking into account the latter’s strengths and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Seybold PG, May M, Bagal UA (1987) J Chem Educ 64:575

    Article  CAS  Google Scholar 

  2. Engelsen SB, Koca J, Braccini I, Hervé Du Penhoat C, Pérez S (1995) Carbohyd Res 276:1

    Article  CAS  Google Scholar 

  3. Imberty A, Perez S (2000) Chem Rev 100:4567

    Article  CAS  Google Scholar 

  4. Jockusch RA, Kroemer RT, Talbot FO, Snoek LC, Carcabal P, Simons JP, Havenith M, Bakker JM, Compagnon I, Meijer G, von Helden G (2004) J Am Chem Soc 126:5709

    Article  CAS  Google Scholar 

  5. Carcabal P, Hünig I, Gamblin DP, Liu B, Jockusch RA, Kroemer RT, Snoek LC, Fairbanks AJ, Davis BG, Simons JP (2006) J Am Chem Soc 128:1976

    Article  CAS  Google Scholar 

  6. Carcabal P, Jockusch RA, Hünig I, Snoek LC, Kroemer RT, Davis BG, Gamblin DP, Compagnon I, Oomens J, Simons JP (2005) J Am Chem Soc 127:11414

    Article  CAS  Google Scholar 

  7. Li Y, Liu X, Chen D, Wei Z, Liu BJ (2013) Mol Model 19:3619

    Article  CAS  Google Scholar 

  8. Carcabal P, Patsias T, Hünig I, Liu B, Kaposta C, Snoek LC, Gamblin DP, Davis BG, Simons JP (2006) Phys Chem Chem Phys 8:129

    Article  CAS  Google Scholar 

  9. Chen D, Yao Y, Wei Z, Zhang S, Tu P, Liu B, Dong M (2013) Comput Theor Chem 1010:45

    Article  CAS  Google Scholar 

  10. McCammon JA (1984) Protein dynamics. Rep Prog Phys 47:1

    Article  Google Scholar 

  11. Hendrickson JB (1961) J Am Chem Soc 83:4537

    Article  CAS  Google Scholar 

  12. Wertz DH, Allinger NL (1974) Tetrahedron 30:1579

    Article  CAS  Google Scholar 

  13. Allinger NL (1977) J Am Chem Soc 89:8127

    Article  Google Scholar 

  14. Allinger NL, Yuh YH, Lii JH (1989) J Am Chem Soc 111:8551

    Article  CAS  Google Scholar 

  15. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179

    Article  CAS  Google Scholar 

  16. Jorgensen WL, Tirado-Rives J (1988) J Am Chem Soc 110:1657

    Article  CAS  Google Scholar 

  17. Thomas AH (1996) J Comput Chem 17:490

    Article  Google Scholar 

  18. Thomas AH (1999) J Comput Chem 20:730

    Article  Google Scholar 

  19. Dang LX, Pettitt BM, Rossky PJ (1992) J Chem Phys 96:4046

    Article  CAS  Google Scholar 

  20. Stortz CA, Johnson GP, French AD, Csonka GI (2009) Carbohydr Res 344:2217

    Article  CAS  Google Scholar 

  21. Alexander D, Mackerell J (2004) J Comput Chem 25:1584

    Article  Google Scholar 

  22. Hemmingsen L, Madsen DE, Esbensen AL, Olsen L, Engelsen SB (2004) Carbohydr Res 339:937

    Article  CAS  Google Scholar 

  23. Paton RS, Goodman JM (2009) J Chem Inf Model 49:944

    Article  CAS  Google Scholar 

  24. Kaminsky J, Jensen F (2007) J Chem Theory Comput 3:1774

    Article  CAS  Google Scholar 

  25. Liu HN, Dasmahapatra A, Doerksen R (2011) J Chem Phys Lett 511:405

    Article  CAS  Google Scholar 

  26. Beachy MD, Chasman D, Murphy RB, Halgren TA, Friesner RA (1997) J Am Chem Soc 119:5908

    Article  CAS  Google Scholar 

  27. Fariborz M, Nigel GJR, Waynel CG, Rob L, Mark L, Craig C, George C, Thomas H, Still WC (1990) J Comput Chem 11:440

    Article  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Gonzalez C, Pople JA (2004) GAUSSIAN 03 (Revision C.02), Gaussian, Wallingford, CT

  29. McDonald DQ, Still WC (1992) Tetrahedron Lett 33:7743

    Article  CAS  Google Scholar 

  30. Halgren TA (1996) J Comput Chem 17:520

    Article  CAS  Google Scholar 

  31. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China Contract No. 21373077, NSFC-Henan Talent Training Fund Contract No. U1304310, and the Natural Science Foundation of Henan Educational Committee under Contract No. 12B430001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Bo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Yong-Zhi, L., Zhi-Chao, W. et al. Performance of four different force fields for simulations of dipeptide conformations: GlyGly, GlyGly, GlyGly · Cl, GlyGly · Na+ and GlyGly · (H2O)2 . J Mol Model 20, 2279 (2014). https://doi.org/10.1007/s00894-014-2279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2279-4

Keywords

Navigation