Skip to main content
Log in

Molecular dynamics, dynamic site mapping, and highthroughput virtual screening on leptin and the Ob receptor as anti-obesity target

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Body weight control is a mechanism finely regulated by several hormonal, metabolic, and nervous pathways. The leptin receptor (Ob-R) is crucial for energy homeostasis and regulation of food uptake. Leptin is a 16 kDa hormone that is mainly secreted by fat cells into the bloodstream, and under normal circumstances, circulating levels are proportionate to the fat body mass. Sensing of elevated leptin levels by the hypothalamic neurocircutry activates a negative feedback loop resulting in reduced food intake and increased energy expenditure. Decreased concentrations lead to opposite effects. Therefore rational design of leptin agonists constitute an appealing challenge in the battle against obesity. In this study, we performed protein-protein docking among the re-built crystal structure of leptin and leptin binding domain (LBD). The obtained complex was used as a starting point to carry out nanosecond-scale molecular dynamics simulations to characterize the key regions in terms of physical-chemical features involved in the protein-protein interaction (dynamic site mapping filtered by means multivariate analysis) and used to carry out a HTVS. The main goal of this study was to suggest guidelines for the rational drug design of new agonists of leptin. Identified hits could be a consistent starting point to carry out in vitro testing.

Leptin and the Ob receptor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Heshka J, Jones P (2001) A role for dietary fat in leptin receptor, Ob-Rb, function. Life Sci 69:987–1003

    Article  CAS  Google Scholar 

  2. Fruhbeck G (2001) A heliocentric view of leptin. Proc Nutr Soc 60:301–318

    Article  CAS  Google Scholar 

  3. Zhang FM, Basinski M, Beals J, Briggs S, Churgay L, Clawson D, Di Marchi R, Furman T, Hale J, Hsiung H, Schoner B, Smith D, Zhang XY, Wery J, Shevitz R (1997) Crystal structure of the obese leptin-E100. Nature 387:206–209

    Article  CAS  Google Scholar 

  4. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J (1995) Identification and expression cloning of a leptin receptor, Ob-R. Cell 83:1263–1271

    Article  CAS  Google Scholar 

  5. Fong TM, Huang RR, Tota MR, Mao C, Smith T, Varnerin J, Karpitskiy VV, Krause JE, van der Ploeg LH (1998) Localization of leptin binding domain in the leptin receptor. Mol Pharmacol 53:234–240

    CAS  Google Scholar 

  6. Sandowski Y, Raver N, Gussakovsky EE, Shochat S, Dym O, Livnah O, Rubinstein M, Krishna R, Gertler A (2002) Subcloning, expression, purification, and characterization of recombinant human leptin-binding domain. J Biol Chem 277:46304–46309

    Article  CAS  Google Scholar 

  7. Iserentant H, Peelman F, Defeau D, Vandekerckhove J, Zabeau L, Tavernier J (2005) Mapping of the interface between leptin and the leptin receptor CRH2 domain. J Cell Sci 118:2519–2527

    Article  CAS  Google Scholar 

  8. Peelman F, Van Beneden K, Zabeau L, Iserentant H, Ulrichts P, Defeau D, Verhee A, Catteeuw D, Elewaut D, Tavernier J (2004) Mapping of the leptin binding sites and design of a leptin antagonist. J Biol Chem 279:41038–41046

    Article  CAS  Google Scholar 

  9. Peelman F, Iserentant H, De Smet AS, Vandekerckhove J, Zabeau L, Tavernier J (2006) Mapping of binding site III in the leptin receptor and modeling of a hexameric leptin-leptin receptor complex. J Biol Chem 281:15496–15504

    Article  CAS  Google Scholar 

  10. Hiroike T, Higo J, Jingami H, Toh H (2000) Homology modeling of human leptin/leptin receptor complex. Biochem Biophys Res Commun 275:154–158

    Article  CAS  Google Scholar 

  11. Zabeau L, Defeau D, Iserentant H, Vandekerckhove J, Peelman F, Tavernier J (2005) Leptin receptor activation depends on critical cysteine residues in its fibronectin type III subdomains. J Biol Chem 280:22632–22640

    Article  CAS  Google Scholar 

  12. Zabeau L, Verhee A, Catteeuw D, Faes L, Seeuws S, Decruy T, Elewaut D, Peelman F, Tavernier J (2012) Selection of non-competitive leptin antagonists using a random nanobody-based approach. Biochem J 441:425–434

    Article  CAS  Google Scholar 

  13. Carpenter B, Hemsworth G, Wu Z, Maamra M, Strasburger C, Ross R, Artymiuk P (2012) Structure of the human obesity receptor leptin-binding domain reveals the mechanism of leptin-antagonism by a monoclonal antibody. Structure 20:487–497

    Article  CAS  Google Scholar 

  14. Tutone M, Lauria A, Almerico AM (2014) Leptin and the ob-receptor as anti-obesity target: recent in silico advances in the comprehension of the protein-protein interaction and rational drug design of anti-obesity lead compounds. Curr Pharm Des 20:136–145

    Article  CAS  Google Scholar 

  15. Lauria A, Tutone M, Barone G, Almerico AM (2014) Multivariate analysis in the identification of biological targets for designed molecular structures: the BIOTA protocol. Eur J Med Chem. doi:10.1016/j.ejmech.2014.01.025

    Google Scholar 

  16. Lauria A, Terenzi A, Gentile C, Martorana A, Gennaro G, Barone G, Almerico AM (2014) In silico, spectroscopic, and biological insights on annelated pyrrolo[3,2-e]pyrimidines with antiproliferative activity. Lett Drug Des Discov 11:15–26

    Article  CAS  Google Scholar 

  17. Almerico AM, Tutone M, Pantano L, Lauria A (2013) A3 adenosine receptor: Homology modeling and 3D-QSAR studies. J Mol Graph Mod 42:60–72

    Article  CAS  Google Scholar 

  18. Lauria A, Abbate I, Patella C, Martorana A, Dattolo G, Almerico AM (2013) New annelated thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines, with potent anticancer activity, designed through VLAK protocol. Eur J Med Chem 62:416–424

    Article  CAS  Google Scholar 

  19. Almerico AM, Tutone M, Pantano L, Lauria A (2012) Molecular dynamics studies on Mdm2 complexes: an analysis of the inhibitor influence. Biochem Biophys Res Comm 424:341–347

    Article  CAS  Google Scholar 

  20. Almerico AM, Tutone M, Guarcello A, Lauria A (2012) In vitro and in silico studies of polycondensed diazine systems as anti-parasitic agents. Bioorg Med Chem Lett 22:1000–1004

    Article  CAS  Google Scholar 

  21. Almerico AM, Tutone M, Lauria A (2012) Receptor-guided 3D-QSAR approach for the discovery of c-kit tyrosine kinase inhibitors. J Mol Model 18:2885–2895

    Article  CAS  Google Scholar 

  22. Lauria A, Patella C, Abbate I, Martorana A, Almerico AM (2012) Lead optimization through VLAK protocol: new annelated pyrrolo-pyrimidine derivatives as antitumor agents. Eur J Med Chem 55:375–383

    Article  CAS  Google Scholar 

  23. Lauria A, Tutone M, Almerico AM (2011) Virtual lock-and-key approach: the in silico revival of Fischer model by means of molecular descriptors. Eur J Med Chem 46:4274–4280

    Article  CAS  Google Scholar 

  24. Almerico AM, Tutone M, Lauria A (2009) In-silico screening of new potential Bcl-2/Bcl-xl inhibitors as apoptosis modulators. J Mol Mod 15:349–355

    Article  CAS  Google Scholar 

  25. Lauria A, Ippolito M, Almerico AM (2009) Combined use of PCA and QSAR/QSPR to predict the drugs mechanism of action. An application to the NCI ACAM Database. QSAR & Comb Sci 28:387–395

    Article  CAS  Google Scholar 

  26. Lauria A, Ippolito M, Almerico AM (2009) Principal component analysis on molecular descriptors as an alternative point of view in the search of new Hsp90 inhibitors. J Comp Biol Chem 33:386–390

    Article  CAS  Google Scholar 

  27. Almerico AM, Tutone M, Lauria A (2008) Docking and multivariate methods to explore HIV-1 drug-resistance: A comparative analysis. J Comp-Aided Mol Des 22:287–297

    Article  CAS  Google Scholar 

  28. Magrane M (2011) UniProt Consortium, UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford). doi:10.1093/database/bar009

    Google Scholar 

  29. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  30. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  31. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinforma 9:40–48

    Article  Google Scholar 

  32. Benkert P, Tosatto SCE, Schomburg D (2008) QMEAN: a comprehensive scoring function for model quality assessment. Proteins: Struct Funct Bioinform 71:261–277

    Article  CAS  Google Scholar 

  33. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350

    Article  CAS  Google Scholar 

  34. Benkert P, Künzli M, Schwede T (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res 37:W510–W514

    Article  CAS  Google Scholar 

  35. Rampage by Molprobity http://mordred.bioc.cam.ac.uk/~rapper/rampage.php

  36. Tovchigrechko A, Vakser IA (2005) Development and testing of an automated approach to protein docking. Proteins 60:296–301

    Article  CAS  Google Scholar 

  37. Schrödinger (2012) Desmond 2.2 Schrödinger, LLC, New York, NY

  38. Schrödinger (2011) Sitemap 2.3, Schrödinger, LLC, New York, NY

  39. Schrödinger (2012) Glide, version 5.7, Schrödinger, LLC, New York, NY

  40. Irwin JJ, Shoichet BK (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182

    Article  CAS  Google Scholar 

  41. Haglund E, Sulkowska J, Zhao H, Gen-Sheng F, Jennings PA, Onuchic JN (2012) The unique cysteine knot regulates the pleiotropic hormone leptin. Plos One 7:e45654

    Article  CAS  Google Scholar 

  42. Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand⁄receptor induced fit effects. J Med Chem 49:534–553

    Article  CAS  Google Scholar 

  43. Nabuurs SB, Wagener M, de Vlieg J (2007) A flexible approach to induced fit docking. J Med Chem 50:6507–6518

    Article  CAS  Google Scholar 

  44. Corbeil CR, Englebienne P, Moitessier N (2007) Docking ligands into flexible and solvated macromolecules. 1. Development and validation of fitted 1.0. J Chem Inf Model 47:435–449

    Article  CAS  Google Scholar 

  45. Rueda M, Bottegoni G, Abagyan R (2009) Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J Chem Inf Model 49:716–725

    Article  CAS  Google Scholar 

  46. Rueda M, Bottegoni G, Abagyan R (2009) Recipes for the selection of experimental protein conformations for virtual screening. J Chem Inf Model 50:186–193

    Article  Google Scholar 

  47. Osguthorpe DJ, Sherman W, Hagler AT (2012) Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering. Chem Biol Drug Des 80:182–193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Almerico.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutone, M., Pantano, L., Lauria, A. et al. Molecular dynamics, dynamic site mapping, and highthroughput virtual screening on leptin and the Ob receptor as anti-obesity target. J Mol Model 20, 2247 (2014). https://doi.org/10.1007/s00894-014-2247-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2247-z

Keywords

Navigation