Skip to main content

Advertisement

Log in

Modeling the mechanism of action of lycopene as a hydroxyl radical scavenger

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The anti-oxidant action of lycopene as a hydroxyl radical scavenger through hydrogen abstraction and addition reaction mechanisms has been investigated. Geometries of seven different conformations of lycopene were optimized employing density functional theory in gas phase which was followed by treatment of their solvation in aqueous media. Thus the all-trans conformation of lycopene was found to be most stable in both gas phase and aqueous media. Four overlapping fragments of all-trans lycopene were considered for calculations of Gibbs barrier energies and rate constants. It is found that several hydrogen atoms can be abstracted from lycopene by a hydroxyl radical barrierlessly. Further, it is shown that addition of an OH radical can also take place to each of the various carbon atoms of lycopene with fairly low barrier energies. Thus lycopene is shown to be an effective anti-oxidant.

Structure of all-trans lycopene

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu Z-Q (2010) Chem Rev 110:5675–5691

    Article  CAS  Google Scholar 

  2. Halliwell B (1996) Ann Rev Nutr 16:33–50

    Article  CAS  Google Scholar 

  3. Burrows CJ, Muller JG (1998) Chem Rev 98:1109–1151

    Article  CAS  Google Scholar 

  4. Hussain SP, Hofseth LJ, Harris CC (2003) Nature 3:276–285

    CAS  Google Scholar 

  5. Bruner SD, Norman DPG, Verdine GC (2000) Nature 403:859–866

    Article  CAS  Google Scholar 

  6. Jena NR, Mishra PC, Suhai S (2009) J Phys Chem B 113:5633–5644

    Article  CAS  Google Scholar 

  7. Yadav A, Mishra PC (2012) Chem Phys 405:76–88

    Article  CAS  Google Scholar 

  8. Mishra PC (1989) J Mol Struct 195:201–211

    Article  CAS  Google Scholar 

  9. McCall MR, Frei B (1999) Free Rad Biol Med 26:1034–1053

    Article  CAS  Google Scholar 

  10. Prasad AK, Mishra PC (2013) J Phy Org Chem. doi:10.1002/poc.3200

    Google Scholar 

  11. Shukla MK, Mishra PC (1996) J Mol Struct 377:247–259

    CAS  Google Scholar 

  12. Kim D-O, Lee CY (2004) Crit Rev Food Sci Nutr 44:253–273

    Article  CAS  Google Scholar 

  13. Chen H-JC, Wu S-B, Chang C-M (2003) Arch Biochem Biophys 415:109–116

    Article  CAS  Google Scholar 

  14. Krinsky NI, Johnson EJ (2005) Mol Asp Med 26:459–516

    Article  CAS  Google Scholar 

  15. Halliwell B, Murcia MA, Chirico S, Aruoma OI (1995) Crit Rev Food Sci Nutr 35:7–20

    Article  CAS  Google Scholar 

  16. Sies H, Stahl W (1995) Am J Clin Nutr 62:1315S–1321S

    CAS  Google Scholar 

  17. Feri B (1994) Natural Anti-oxidants in Human Health and Disease, Academic Press, San Diego

  18. Krinsky NI (2001) Nutrition 17:815–817

    Article  CAS  Google Scholar 

  19. Galano A, Francisco-Marquez M (2009) J Phys Chem B 113:11338–11345

    Article  CAS  Google Scholar 

  20. Stahl W, Sies H (2005) Biochim Biophys Acta 1740:101–107

    Article  CAS  Google Scholar 

  21. Clinton SK (1998) Nutr Rev 56:35–51

    Article  CAS  Google Scholar 

  22. Martinez-Valverde I, Periago MJ, Provan G, Chesson A (2002) J Sci Food Agric 82:323–330

    Article  CAS  Google Scholar 

  23. Guo W-H, Tu C-Y, Hu C-H (2008) J Phys Chem B 112:12158–12167

    Article  CAS  Google Scholar 

  24. Stahl W, Sies H (1996) Arch Biochem Biophy 336(1):1-9

  25. Collins JK, Veazie PP, Roberts W (2006) Hortic Sci 41:1135–1144

    CAS  Google Scholar 

  26. Britton G (1995) FASEB J 9:1551–1558

    CAS  Google Scholar 

  27. Mortensen A, Skibsted LH, Sampson J, Rice-Evans C, Everett SA (1997) FEBS Lett 418:91–97

    Article  CAS  Google Scholar 

  28. Johnson EJ (2002) Nutr Clin Care 5:56–65

    Article  Google Scholar 

  29. Porrini M, Riso P (2000) J Nutr 130:189–192

    CAS  Google Scholar 

  30. Palozza P, Simone RE, Catalano A, Mele MC (2011) Cancers 3:2333–2357

    Article  CAS  Google Scholar 

  31. Graham DL, Carail M, Caris-Veyrat C, Lowe GM (2010) Food Chem Toxicol 48:2413–2420

    Article  CAS  Google Scholar 

  32. Rao AV, Agarwal S (1998) Nutr Res 189:713–721

    Article  Google Scholar 

  33. Kucuk O, Sarkar FH, Sakr W et al (2001) Cancer Epidemiol Biomarkers Prev 10:861–868

    CAS  Google Scholar 

  34. Palozza P, Catalano A, Simone RE, Mele MC, Cittadini A (2012) Ann Nutr Metab 61:126–134

    Article  CAS  Google Scholar 

  35. Qu M, Zhou Z, Chen C, Li M, Pei L, Chu F, Yang J, Wang Y, Li L, Liu C, Zhang L, Zhang G, Yu Z, Wang D (2011) Neurochem Int 59:1095–1103

    Article  CAS  Google Scholar 

  36. Helzlsouer KJ, Comstock GW, Morris JS (1989) Cancer Res 49:6144–6148

    CAS  Google Scholar 

  37. Ozmutlu S, Dede S, Ceylan E (2012) JRAAS 13:328–333

    Google Scholar 

  38. Veeramachaneni S, Ausman LM, Choi SW, Russell RM, Wang X-D (2008) J Nutr 138:1329–1335

    CAS  Google Scholar 

  39. Yaping Z, Suping Q, Wenli Y, Zheng X, Hong S, Side Y, Dapu W (2002) Food Chem 77:209–212

    Article  Google Scholar 

  40. Stahl W, Sundquist AR, Hanusch M, Schwarz W, Sies H (1993) Clin Chem 39:810–814

    CAS  Google Scholar 

  41. Chasse GA, Mak ML, Deretey E, Farkas I, Torday LL, Papp JG, Sharma DSR, Agarwal A, Chakravarthi S, Agarwal S, Rao AV (2001) J Mol Str (Theochem) 571:27–37

    Article  CAS  Google Scholar 

  42. Chasse GA, Chasse KP, Kucsman A, Torday LL, Papp JG (2001) J Mol Str(Theochem) 571:7–26

    Article  CAS  Google Scholar 

  43. Guo J-J, Hsieh H-Y, Hu C-H (2009) J Phys Chem B 113:15699–15708

    Article  CAS  Google Scholar 

  44. Bruskov VI, Malakhova LV, Masalimov ZK, Chernikov AV (2002) Nucl Acid Res 30:1354–1363

    Article  CAS  Google Scholar 

  45. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  47. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  48. Cossi M, Scalmani G, Rega N, Barone V (2002) J Chem Phys 117:43–54

    Article  CAS  Google Scholar 

  49. Ess DH, Houk KN (2005) J Phys Chem A 109:9542–9553

    Article  CAS  Google Scholar 

  50. Silva PJ, Ramos MJ (2011) Comput Theor Chem 966:120–126

    Article  CAS  Google Scholar 

  51. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439–10452

    Article  CAS  Google Scholar 

  52. Wodrich MD, Corminboeuf C, Schleyer PR (2006) Org Lett 8:3631–3634

    Article  CAS  Google Scholar 

  53. Perdrew JP, Ziesche Ed P, Eschrig H (1991) Akad Verlag 91:11–20

    Google Scholar 

  54. Levine IN (1994) Quantum chemistry, 4th edn. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  55. Ramalho SS, Vilela AFA, Barreto PRP, Gargano R (2005) Chem Phys Lett 413:151–156

    Article  CAS  Google Scholar 

  56. Carstensen HH, Dean AM (2009) J Phys Chem A 113:367–380

    Article  CAS  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Hratchian X, Li HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth G A, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz J V, Cioslowski J, Fox DJ (2009), Gaussian 09, revisionA.1. Gaussian Inc, Wallingford, CT

  58. Frisch AE, Dennington RD, Keith TA, Nielsen AB, Holder AJ (2003) Gauss View, rev. 3.9. Gaussian Inc, Pittsburg, PA

  59. Boileau TWM, Boileau AC, Erdman JW Jr (2002) Exp Biol Med 227:914–919

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University Grants Commission (New Delhi) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phool C. Mishra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, A.K., Mishra, P.C. Modeling the mechanism of action of lycopene as a hydroxyl radical scavenger. J Mol Model 20, 2233 (2014). https://doi.org/10.1007/s00894-014-2233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2233-5

Keywords

Navigation