Skip to main content
Log in

ReaxFF molecular dynamics simulations of CO collisions on an O-preadsorbed silica surface

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A quasiclassical trajectory dynamics study was performed for carbon monoxide collisions over an oxygen preadsorbed β-cristobalite (001) surface. A reactive molecular force field (ReaxFF) was used to model the potential energy surface. The collisions were performed fixing several initial conditions: CO rovibrational states (v = 0–5 and j = 0, 20, 35), collision energies (0.05 ≤ Ecol ≤ 2.5 eV), incident angles (θv = 0°, 45°) and surface temperatures (Tsurf = 300 K, 900 K). The principal elementary processes were the molecular reflection and the non-dissociative molecular adsorption. CO2 molecules were also formed in minor extension via an Eley-Rideal reaction although some of them were finally retained on the surface. The scattered CO molecules tend to be translationally colder and internally hotter (rotationally and vibrationally) than the initial ones. The present study supports that CO + Oad reaction should be less important than O + Oad reaction over silica for similar initial conditions of reactants, in agreement with experimental data.

ReaxFF molecular dynamics simulations of CO collisions on an O-preadsorbed silica surface

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Seiff A, Kirk DB (1977) J Geophys Res 82:4364–4378

    Article  CAS  Google Scholar 

  2. Ngo T, Snyder EJ, Tong WM, Williams RS, Anderson MS (1994) Surf Sci Lett 314:L817–L822

    Article  CAS  Google Scholar 

  3. Kovalev VL, Kolesnikov AF (2005) Fluid Dyn 40:669–693

    Article  CAS  Google Scholar 

  4. Arasa C, Gamallo P, Sayós R (2005) J Phys Chem B 109:14954–14964

    Article  CAS  Google Scholar 

  5. Cacciatore M, Rutigliano M, Billing GD (1999) J Therm Heat Transf 13:195–203

    Article  CAS  Google Scholar 

  6. Morón V, Gamallo P, Martin-Gondre L, Crespos C, Larregaray P, Sayós R (2011) Phys Chem Chem Phys 13:17494–17504

    Article  CAS  Google Scholar 

  7. Kulkarni AD, Truhlar DG, Srinivasan SG, van Duin ACT, Norman P, Schwartzentruber TE (2013) J Phys Chem C 117:258–269

    Article  CAS  Google Scholar 

  8. Sepka S, Chen YK, Marschall J, Copeland RA (2000) J Therm Heat Transf 14:45–52

    Article  CAS  Google Scholar 

  9. Fajín JLC, Cordeiro NDS, Gomes JRB (2008) J Phys Chem C 112:17291–17302

    Article  CAS  Google Scholar 

  10. Kizilkaya AC, Gracia JM, Niemantsverdriet JW (2010) J Phys Chem C 114:21672–21680

    Article  CAS  Google Scholar 

  11. Lee J, Zhang Z, Deng X, Sorescu DC, Matranga C, Yates JT Jr (2011) J Phys Chem C 115:4163–4167

    Article  CAS  Google Scholar 

  12. Morón V, Arasa C, Busnengo HF, Sayós R (2009) Surf Sci 603:2742–2751

    Article  CAS  Google Scholar 

  13. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  14. Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  15. Kresse G, Furthmüller J (1996) Comput. Mater Sci 6:15–50

    CAS  Google Scholar 

  16. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  17. Hammer B, Hansen LB, Nørskov JK (1999) Phys Rev B 59:7413–7421

    Article  Google Scholar 

  18. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  19. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  20. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  21. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  22. van Duin ACT, Dasgupta S, Lorant F, Goddard WA III (2001) J Comput Chem 105:9396–9409

    Google Scholar 

  23. Raju M, Kim SY, van Duin ACT, Fichthorn KA (2013) J Phys Chem C 17:10558–10572

    Article  CAS  Google Scholar 

  24. Kim SY, Kumar N, Persson P, Sofo J, van Duin ACT, Kubicki JD (2013) Langmuir 29:7838–7846

    Article  CAS  Google Scholar 

  25. Neyts EC, Khalilov U, Pourtois G, van Duin ACT (2011) J Phys Chem C 115:4818–4823

    Article  CAS  Google Scholar 

  26. Khalilov U, Neyts EC, Pourtois G, van Duin ACT (2011) J Phys Chem C 115:24839–24848

    Article  CAS  Google Scholar 

  27. Khalilov U, Pourtois G, van Duin ACT, Neyts EC (2012) J Phys Chem C 116:8649–8656

    Article  CAS  Google Scholar 

  28. Khalilov U, Pourtois G, van Duin ACT, Neyts EC (2012) J Phys Chem C 116:21856–21863

    Article  CAS  Google Scholar 

  29. Ding J, Zhang Y, Han KL (2013) J Phys Chem A 117:3266–3278

    Article  CAS  Google Scholar 

  30. Cheng XM, Wang QD, Li JQ, Wang JB, Li XY (2012) J Phys Chem A 116:9811–9818

    Article  CAS  Google Scholar 

  31. Rahaman O, van Duin ACT, Bryantsev VS, Mueller JE, Solares SD, Goddard WA III, Doren DJ (2010) J Phys Chem A 114:3556–3568

    Article  CAS  Google Scholar 

  32. Bai C, Liu L, Sun H (2012) J Phys Chem C 116:7029–7039

    Article  CAS  Google Scholar 

  33. Pitman MC, van Duin ACT (2012) J Am Chem Soc 134:3042–3053

    Article  CAS  Google Scholar 

  34. Norman P, Schwartzentruber TE, Leverentz H, Luo S, Meana-Pañeda R, Paukku Y, Truhlar DG (2013) J Phys Chem C 117:9311–9321

    Article  CAS  Google Scholar 

  35. Khalilov U, Pourtois G, Huygh S, van Duin ACT, Neyts EC, Bogaerts A (2013) J Phys Chem C 117:9819–9825

    Article  CAS  Google Scholar 

  36. Newsome AD, Sengupta D, Foroutan H, Russo MF, van Duin ACT (2012) J Phys Chem C 116:16111–16121

    Article  CAS  Google Scholar 

  37. Newsome AD, Sengupta D, van Duin ACT (2013) J Phys Chem C 117:5014–5027

    Article  CAS  Google Scholar 

  38. Farah K, Müller-Plathe F, Böhm MC (2012) ChemPhysChem 13:1127–1151

    Article  CAS  Google Scholar 

  39. Parsons N, Levin DA, van Duin ACT (2013) 138:044316-1-13

  40. Gamallo P, Martin-Gondre L, Sayós R, Crespos C, Larregaray P (2013) Potential energy surfaces for the dynamics of elementary gas-surface processes. In: Díez Muiño R, Busnengo HF (eds) Dynamics of gas-surface interactions: atomic-level understanding of scattering processes at surfaces, 1st edn. Springer, Berlin, pp 25–50

    Chapter  Google Scholar 

  41. Billing GD (2000) Dynamics of Molecule Surface Interactions. Wiley, New York, pp 93–111

    Google Scholar 

  42. Garrison BJ (1992) Chem Soc Rev 21:155–162

    Article  CAS  Google Scholar 

  43. Martinazzo R, Assoni S, Marinoni G (2004) J Chem Phys 120:8761–8771

    Article  CAS  Google Scholar 

  44. Tully JC (1980) J Chem Phys 73:1975–1985

    Article  CAS  Google Scholar 

  45. Arasa C, Busnengo HF, Salin A, Sayós R (2008) Surf Sci 602:975–985

    Article  CAS  Google Scholar 

  46. QCTSURF code is not published. More information can be obtained from authors

  47. Chase MW Jr (1998) NIST-JANAF thermochemical tables, J Phys Chem Ref Data Monograph 9, 4th edn. American Institute of Physics, New York

    Google Scholar 

  48. Gray DE (ed) (1982) American Institute of of Physics Handbook, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  49. Fang W, Liu W, Guo X, Lu X, Lu L (2011) J Phys Chem C 115:8622–8629

    Article  CAS  Google Scholar 

  50. Fajín JLC, Cordeiro MNDS, Gomes JRB (2008) J Phys Chem C 112:17291–17302

    Article  CAS  Google Scholar 

  51. Sorescu DC, Lee J, Al-Saidi WA, Jordan KD (2011) J Chem Phys 134:104707-1-13

    Article  CAS  Google Scholar 

  52. Fang H, Kamakoti P, Zang J, Cundy S, Paur C, Ravikovitch PI, Sholl DS (2012) J Phys Chem C 116:10692–10701

    Article  CAS  Google Scholar 

  53. Morón V, Arasa C, Sayós R, Busnengo HF (2008) AIP Conf Proc 1084:682–687

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Spanish Ministry of Science and Innovation (Project CTQ2009-07647), by the Autonomous Government of Catalonia (Project 2009SGR1041) and by the European Commission research funding (Project FP7-SPACE-2009-242311). We thank Prof. van Duin for providing us with a ReaxFF standalone non-parallel fortran-77 code to be used together with our QCTSURF code. We also thank Alejandro Díaz, who carried out some extra QCT calculations at the end of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Sayós.

Additional information

This paper belongs to Topical Collection 9th European Conference on Computational Chemistry (EuCo-CC9)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamallo, P., Prats, H. & Sayós, R. ReaxFF molecular dynamics simulations of CO collisions on an O-preadsorbed silica surface. J Mol Model 20, 2160 (2014). https://doi.org/10.1007/s00894-014-2160-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2160-5

Keywords

Navigation