Skip to main content
Log in

Quantum chemical DFT study of the interaction between molecular oxygen and FeN4 complexes, and effect of the macrocyclic ligand

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) was used to examine the interaction between molecular oxygen (O2) and macrocyclic iron complexes of the type FeN4 during the formation of FeN4–O2 adducts. In order to understand how this interaction is affected by different macrocyclic ligands, O2 was bonded to iron-tetraaza[14]annulene (FeTAA), iron-tetramethyl-tetraaza[14]annulene (FeTMTAA), iron-hexamethyl-tetraaza[14]annulene (FeHMTAA), iron dibenzotetraaza[14]annulene (FeDBTAA), and two iron-tetramethyl-dibenzotetraaza[14]annulene complexes (FeTMDBTAA1, FeTMDBTAA2). The ground state for FeN4-O2 adducts was the open-shell singlet. Analysis of the factors influencing the O2 bonding process showed that different macrocyclic ligands yielded adducts with differences in O-O and Fe-O2 bond lengths, total charge over the O2 fragment, O-O vibrational frequency, and spin density in the O2 fragment. A smaller energy gap between the α-HOMO of the FeN4 complexes and the β-LUMO of O2 increased the interaction between the complex and the O2 molecule. The order of activity was FeDBTAA < FeTMDBTAA2 < FeTMDBTAA1 < FeTAA < FeTMTAA < FeHMTAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hamann CH, Hamnett A, Vielstich W (1998) Electrochemistry. Wiley-VCH, Weinheim

    Google Scholar 

  2. Kordesch K (1996) Simader G (1996) Fuel cells and their applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  3. Schmickler W (1999) Annu Rep Prog Chem Sect C 95:117

    Article  CAS  Google Scholar 

  4. Larminie J, Dicks A (2000) Fuel cell systems explained. Wiley, New York

    Google Scholar 

  5. Carrette L, Fiedrich KA, Stimming U (2001) Fuel Cells 1:5

    Article  CAS  Google Scholar 

  6. Markovic NM, Ross PN (2002) Surf Sci 45:117

    Article  CAS  Google Scholar 

  7. Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells: fundamentals, technology and applications. Wiley-VCH, Weinheim

    Google Scholar 

  8. Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers fundamentals and applications. Springer, Berlin

    Book  Google Scholar 

  9. Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2007) J Power Sources 173:891

    Article  CAS  Google Scholar 

  10. Bezerra CWB, Zhang L, Liu H, Lee K, Marques ALB, Marques EP, Wang H, Zhang J (2008) Electrochim Acta 53:4937

    Article  CAS  Google Scholar 

  11. Medard C, Lefevre M, Dodelet JP, Jaouen F, Lindbergh G (2006) Electrochim Acta 51:3202

    Article  CAS  Google Scholar 

  12. Zhang L, Zhang J, Wilkinson DP, Wang H (2006) J Power Sources 156:171

    Article  CAS  Google Scholar 

  13. Feng Y, Alonso-Vante N (2008) Phys Stat Sol B 245:1792

    Article  CAS  Google Scholar 

  14. Wang B (2005) J Power Sources 152:1

    Article  CAS  Google Scholar 

  15. Baranton S, Coutanceau C, Garnier E, Leger JM (2006) J Electroanal Chem 590:100

    Article  CAS  Google Scholar 

  16. Koslowski UI, Abs-Wurmbach I, Fiechter S, Bogdanoff P (2008) J Phys Chem C 112:15356

    Article  CAS  Google Scholar 

  17. Pylypenko S, Mukherjee S, Olson TS, Atanassov P (2008) Electrochim Acta 53:7875

    Article  CAS  Google Scholar 

  18. Baker R, Wilkinson DP, Zhang J (2008) Electrochim Acta 53:6906

    Article  CAS  Google Scholar 

  19. Othman R, Dicks AL, Zhu Z (2012) Int J Hydrogen Energy 37:357

    Article  CAS  Google Scholar 

  20. Masa J, Ozoemena K, Schuhmann W, Zagal JH (2012) J Porphyrins Phthalocyanines 16:761

    Article  CAS  Google Scholar 

  21. Jasinski R (1964) Nature 201:1212

    Article  CAS  Google Scholar 

  22. Alt H, Binder H, Sandstete G (1973) J Catal 28:8

    Article  CAS  Google Scholar 

  23. Beck F (1977) J Appl Electrochem 7:239

    Article  CAS  Google Scholar 

  24. Wiesener K, Ohms D, Neumann V, Franke R (1989) Mater Chem Phys 22:457

    Article  CAS  Google Scholar 

  25. Lukes PJ, Mcgregor AC, Crayston JA (1992) Inorg Chem 31:4697

    Article  CAS  Google Scholar 

  26. Putten AVD, Visscher AE, Barendrecht E (1987) J Electroanal Chem 221:95

    Article  Google Scholar 

  27. Convert P, Coutanceau C, Crouigneau P, Gloaguen F, Lamy C (2001) J Appl Electrochem 31:945

    Article  CAS  Google Scholar 

  28. Franke R, Ohms D, Wiesener K (1989) J Electroanal Chem 260:63

    Article  CAS  Google Scholar 

  29. Sun Y, Chen K, Jia L, Li H (2011) Phys Chem Chem Phys 13:13800

    Article  CAS  Google Scholar 

  30. Sun S, Jiang N, Xia D (2011) J Phys Chem C 115:9511

    Article  CAS  Google Scholar 

  31. Shaik S, Chen H (2011) J Biol Inorg Chem 16:841

    Article  CAS  Google Scholar 

  32. Chen H, Ikeda-Saito M, Shaik S (2008) J Am Chem Soc 130:14778

    Article  CAS  Google Scholar 

  33. Pauling L, Coryell CD (1936) Proc Natl Acad Sci U S A 22:210

    Article  CAS  Google Scholar 

  34. Pauling L (1964) Nature 203:182

    Article  CAS  Google Scholar 

  35. Weiss JJ (1964) Nature 202:83

    Article  CAS  Google Scholar 

  36. Weiss JJ (1964) Nature 202:183

    Article  Google Scholar 

  37. McClure DS (1960) Radiat Res Suppl 2:218

    Article  CAS  Google Scholar 

  38. Goddard WA, Olafson BD (1975) Proc Natl Acad Sci U S A 72:2335

    Article  CAS  Google Scholar 

  39. Olafson BD, Goddard WA (1977) Proc Natl Acad Sci U S A 74:1315

    Article  CAS  Google Scholar 

  40. Rovira C, Ballone P, Parrinello M (1997) Chem Phys Lett 271:247

    Article  CAS  Google Scholar 

  41. Rovira C, Kunk K, Hutter J, Ballone P, Parrinello M (1997) J Phys Chem A 101:8914

    Article  CAS  Google Scholar 

  42. Liao M-S, Huang M-J, Watts JD (2010) J Phys Chem A 114:9554

    Article  CAS  Google Scholar 

  43. Liu Y, Sun H (2011) J Comput Chem 32:1279

    Article  CAS  Google Scholar 

  44. Collman JP, Brauman JI, Halbert TR, Suslick KS (1976) Proc Natl Acad Sci U S A 73:3333

    Article  CAS  Google Scholar 

  45. Das TK, Couture M, Ouellet Y, Guertin M, Rousseau DL (2001) Proc Natl Acad Sci U S A 98:479

    Article  CAS  Google Scholar 

  46. Jensen KP, Ryde U (2004) J Biol Chem 279:14561

    Article  CAS  Google Scholar 

  47. Frisch MJ et al (2003) Gaussian 03, Revision C02. Gaussian, Inc, Wallingford

    Google Scholar 

  48. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  49. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  50. Becke AD (1993) J Phys Chem 98:5648

    Article  CAS  Google Scholar 

  51. Nakashima H, Hasegawa J-Y, Nakatsuji H (2006) J Comput Chem 27:426

    Article  CAS  Google Scholar 

  52. Blomberg LM, Blomberg MRA, Siegbahn PEM (2005) J Inorg BioChem 99:949

    Article  CAS  Google Scholar 

  53. Ali ME (2012) J Phys Chem B 116:5849

    Article  CAS  Google Scholar 

  54. Silva ALP, Almeida LF, Marques ALB, Varela JJG Jr, Tanaka AA, da Silva ABF (2014) Polyhedron 67:36

    Article  CAS  Google Scholar 

  55. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  56. Krishnan R, Binkley JS, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  57. Yamaguchi K, Jensen F, Dorigo A, Houk KN (1988) Chem Phys Lett 149:537

    Article  CAS  Google Scholar 

  58. Yamakana S, Kawakami T, Nagao H, Yamaguchi K (1994) Chem Phys Lett 231:25

    Article  Google Scholar 

  59. Li W, Wang L, Yang L, Szeghalmi A, Ye Y, Ma J, Luo M (2007) J Raman Spectrosc 38:483

    Article  CAS  Google Scholar 

  60. Huber K, Herzberg G (1979) Molecular spectra and molecular structure: constants of diatomic molecules. Reinhold, New York

    Book  Google Scholar 

  61. Krupenie PH (1972) J Phys Chem Ref Data 1:339

    Article  Google Scholar 

  62. Tiemann E (1982) J Mol Spectrosc 91:60

    Article  CAS  Google Scholar 

  63. Ervin KM, Anusiewicz I, Skurski P, Simons J, Lineberger WC (2003) J Phys Chem A 107:8521

    Article  CAS  Google Scholar 

  64. Ignaczak A, Schmickler W, Bartenschlager S (2006) J Electroanal Chem 586:297

    Article  CAS  Google Scholar 

  65. Henson NJ, Hay PJ, Redondo A (1999) Inorg Chem 38:1618

    Article  CAS  Google Scholar 

  66. Liao MS, Scheiner S (2002) J Comput Chem 23:1391

    Article  CAS  Google Scholar 

  67. Shi Z, Zhang J (2007) J Phys Chem C 111:7084

    Article  CAS  Google Scholar 

  68. Pearson RG (1986) Proc Natl Acad Sci U S A 83:8440

    Article  CAS  Google Scholar 

  69. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  70. Cárdenas-Jirón GI, Zagal JH (2001) J Electroanal Chem 497:55

    Article  Google Scholar 

  71. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Coord Chem Rev 254:2755

    Article  CAS  Google Scholar 

  72. Watanabe T, Ama T, Nakamoto K (1984) J Phys Chem 88:440

    Article  CAS  Google Scholar 

  73. Nakamoto K (1990) Coord Chem Rev 100:363

    Article  CAS  Google Scholar 

  74. Angelis F, Car R, Spiro TG (2003) J Am Chem Soc 125:15710

    Article  CAS  Google Scholar 

  75. Wang GF, Ramesh N, Hsu A, Chu D, Chen R (2008) Mol Simul 34:1051

    Article  CAS  Google Scholar 

  76. Sabelli NH, Melendres CA (1982) J Phys Chem 86:4342

    Article  CAS  Google Scholar 

  77. Tsuda M, Dy ES, Kasai H (2005) J Chem Phys 122:244719

    Article  CAS  Google Scholar 

  78. Silaghi-Dumitrescu R, Silaghi-Dumitrescu I (2006) J Inorg BioChem 100:161

    Article  CAS  Google Scholar 

  79. Shikama K (2006) Prog Biophys Mol Bio 91:83

    Article  CAS  Google Scholar 

  80. Jensen KP, Roos BO, Ryde U (2005) J Inorg BioChem 99:45

    Article  CAS  Google Scholar 

  81. Tsai TE, Groves JL, Wu CS (1981) J Chem Phys 74:4306

    Article  CAS  Google Scholar 

  82. Zagal JH, Cárdenas-Jirón GI (2000) J Electroanal Chem 489:96

    Article  CAS  Google Scholar 

  83. Cárdenas-Jirón GI, Gulppi MA, Caro CA, Rio RD, Páez M, Zagal JH (2001) Electrochim Acta 46:3227

    Article  Google Scholar 

  84. Caro CA, Zagal JH, Bedioui F, Adamo C, Cárdenas-Jirón GI (2004) J Phys Chem A 108:6045

    Article  CAS  Google Scholar 

  85. Cárdenas-Jirón GI, Gonzalez C, Benavides J (2012) J Phys Chem C 116:16979

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Brazilian agencies Fundação de Amparo à Pesquisa e Desenvolvimento Científico do Maranhão (FAPEMA), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Financiadora de Estudos e Projetos (FINEP) for the provision of research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaldyr de Jesus Gomes Varela Júnior.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, A.L.P., de Almeida, L.F., Marques, A.L.B. et al. Quantum chemical DFT study of the interaction between molecular oxygen and FeN4 complexes, and effect of the macrocyclic ligand. J Mol Model 20, 2131 (2014). https://doi.org/10.1007/s00894-014-2131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2131-x

Keywords

Navigation