Skip to main content

Advertisement

Log in

Density functional theory study of epoxy polymer chains adsorbing onto single-walled carbon nanotubes: electronic and mechanical properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We performed first principles calculations based on density functional theory (DFT) to investigate the effect of epoxy monomer content on the electronic and mechanical properties of single-walled carbon nanotubes (SWCNTs). Our calculation results reveal that interfacial interaction increases with increasing numbers of epoxy monomers on the surface of SWCNTs. Furthermore, density of states (DOS) results showed no orbital hybridization between the epoxy monomers and nanotubes. Mulliken charge analysis shows that the epoxy polymer carries a positive charge that is directly proportional to the number of monomers. The Young’s modulus of the nanotubes was also studied as a function of monomer content. It was found that, with increasing number of monomers on the nanotubes, the Young’s modulus first decreases and then approaches a constant value. The results of a SWCNT pullout simulation suggest that the interfacial shear stress of the epoxy/SWCNT complex is approximately 68 MPa. These results agreed well with experimental results, thus proving that the simulation methods used in this study are viable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–e
Fig. 2a–e
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Razavi-Nouri M, Ghorbanzadeh-Ahangari M, Fereidoon M, Jahanshahi M (2009) Effect of carbon nanotubes content on crystallization kinetics and morphology of propylene. Polym Test 28:46–52

    Article  CAS  Google Scholar 

  2. Liu L, Wang Y, Li Y, Wu J, Zhou Z, Jiang C (2009) Improved fracture toughness of immiscible polypropylene/ethylene-co-vinyl acetate blends with multiwalled carbon nanotubes. Polymer 50:3072–3078

    Article  CAS  Google Scholar 

  3. Park S-D, Han D-H, Teng D, Kwon Y (2008) Rheological properties and dispersion of multi-walled carbon nanotube (MWCNT) in polystyrene matrix. Curr Appl Phys 8:482–485

    Article  Google Scholar 

  4. Auad ML, Mosiewicki MA, Uzunpinar C, Williams RJJ (2009) Single-wall carbon nanotubes/epoxy elastomers exhibiting high damping capacity in an extended temperature range. Compos Sci Technol 69:1088–1092

    Article  CAS  Google Scholar 

  5. Yang S-Y, Ma C-CM, Teng C-C, Huang Y-W, Liao S-H, Huang Y-L, Tien H-W, Lee T-M, Chiou K-C (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48:592–603

    Article  CAS  Google Scholar 

  6. Fan Z, Santare MH, Advani SG (2008) Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes. Compos Appl Sci Manuf 39:540–554

    Article  Google Scholar 

  7. Zheng Q, Xue Q, Yan K, Gao X, Li Q, Hao L (2008) Effect of chemisorption on the interfacial bonding characteristics of carbon nanotube-polymer composites. Polymer 49:800–808

    Article  CAS  Google Scholar 

  8. Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323

    Article  CAS  Google Scholar 

  9. Gou J, Minaie B, Wang B, Liang Z, Zhang C (2004) Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites. Comput Mater Sci 31:225–236

    Article  CAS  Google Scholar 

  10. WengVing B, ChangChun Z, WangZhao C (2004) Simulation of Young’s modulus of single-walled carbon nanotubes by molecular dynamics. Physica B 352:156–163

    Article  Google Scholar 

  11. Ebrahimi A, Ehteshami H, Mohammadi M (2008) Density functional calculations of response of single-walled armchair carbon nanotubes to axial tension. Comput Mater Sci 41:486–492

    Article  CAS  Google Scholar 

  12. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268

    Article  CAS  Google Scholar 

  13. Frauenheim T, Seifert G, Elstner M, Niehaus T, Köhler C, Amkreutz M, Sternberg M, Hajnal Z, Carlo AD, Suhai S (2002) Atomistic simulations of complex materials: ground-state and excited-state properties. J Phys Condens Matter 14:3015–3049

    Article  CAS  Google Scholar 

  14. Yang MJ, Koutsos V, Zaiser M (2005) Interactions between Polymers and Carbon Nanotubes: A Molecular Dynamics Study. J Phys Chem B 109:10009–10014

    Article  CAS  Google Scholar 

  15. Liao K, Li S (2001) Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl Phys Lett 79:4225–4227

    Article  CAS  Google Scholar 

  16. Aradi B, Hourahine B, Frauenheim T (2007) DFTB+, a Sparse Matrix-Based Implementation of the DFTB Method. J Phys Chem A 111:5678–5684

    Article  CAS  Google Scholar 

  17. Ganji MD, Fereidoon A, Jahanshahi M, Ghorbanzadeh Ahangari M (2012) Elastic properties of SWCNTs with curved morphology: Density functional tight binding based treatment. Solid State Commun 152:1526–1530

    Article  CAS  Google Scholar 

  18. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  19. Kohn W (1999) Nobel Lecture: Electronic structure of matter-wave functions and density functionals. Rev Mod Phys 71:1253–1266

    Article  CAS  Google Scholar 

  20. Ordejón P, Artacho E, Soler JM (1996) Self-consistent order-N density-functional calculations for very large systems. Phys Rev B 53:R10441–R10444

    Article  Google Scholar 

  21. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter 14:2745–2779

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  23. Gulans A, Puska MJ, Nieminen RM (2009) Linear-scaling self-consistent implementation of the van der Waals density functional. Phys Rev B 79:201105, R

    Article  Google Scholar 

  24. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Van der Waals Density Functional for General Geometries. Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  25. London F (1937) The general theory of molecular forces. Trans Faraday Soc 33:8b–26b

    Article  Google Scholar 

  26. Stone AJ (1996) The theory of intermolecular forces. Clarendon, Oxford

    Google Scholar 

  27. Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. I. J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

  28. Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300

    Article  CAS  Google Scholar 

  29. Krishna A, Dujardin E, Ebbesen TW, Yianilos PN, Treacy MMJ (1998) Young’s modulus of single-walled nanotubes. Phys Rev B 58:14013–14019

    Article  Google Scholar 

  30. Terrones M (2003) Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annu Rev Mater Res 33:419–501

    Article  CAS  Google Scholar 

  31. Milowska K, Birowska M, Majewski J (2012) Mechanical and electrical properties of carbon nanotubes and graphene layers functionalized with amines. Diam Relat Mater 23:167–171

    Article  CAS  Google Scholar 

  32. Cai J, Wang YD, Wang CY (2009) Effect of ending surface on energy and Young’s modulus of single-walled carbon nanotubes studied using linear scaling quantum mechanical method. Physica B 404:3930–3934

    Article  CAS  Google Scholar 

  33. Cooper CA, Cohen SR, Barber AH, Wagner HD (2002) Detachment of nanotubes from a polymer matrix. Appl Phys Lett 81:3873–3875

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Darvish Ganji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahangari, M.G., Fereidoon, A. & Ganji, M.D. Density functional theory study of epoxy polymer chains adsorbing onto single-walled carbon nanotubes: electronic and mechanical properties. J Mol Model 19, 3127–3134 (2013). https://doi.org/10.1007/s00894-013-1852-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1852-6

Keywords

Navigation